Department News

Congratulations to Morgan Schaller

Ph.D. candidate Morgan Schaller presented his thesis Large Igneous Provinces and Earth's Carbon Cycle: Lessons from the Late Triassic and Rapidly Emplaced Central Atlantic Magmatic Province (11/21/2011)Morgan defended his thesis with flying colors and his committee commented on the completion of a superb dissertation.  Morgan will be in short, filing his dissertation with the graduate school. Congratulations Morgan, job well done!

Dissertation Abstract:

Using stable isotopes of soil carbonates, I demonstrate that the eruption of the Central Atlantic Magmatic Province (CAMP) resulted in a transient perturbation of atmospheric pCO2 in the Late Triassic. I show evidence of a discrete pCO2 pulse (roughly a doubling) immediately after the first CAMP flow-unit preserved in the Newark rift basin, followed by a ~200 kyr falloff toward pre-eruptive concentrations, a pattern repeated above the second and third flow-units. Observations from the Hartford basin indicate that pCO2 had fallen to concentrations well below background by 400 kyr after the final eruptions in the earliest Jurassic.  I use a simple geochemical model to demonstrate that this decrease below pre-eruptive background is most easily accomplished by the extrusion of ~1.12 x 107 km2 of basalt into the equatorial humid belt, which effectively amplified the increase in global continental weathering rate by perhaps as much as 50%.  These results indicate that LIPs can be overall net sinks for CO2.  A test of the Late Triassic equilibrium state from a 33-My record of pCO2, broadly shows a ~3-fold decrease in pCO2 from the Carnian through the Rhaetian.  This decrease is most consistent with the hypothesis that a Late-Triassic increase in continental area within the tropical humid belt, as a result of the slow northward migration of the Pangean Supercontinent, lead to increased rates of continental weathering and CO2 consumption.  A significant implication of this finding is that changes in degassing rates from variable ocean crust production are not driving this long-term decrease in pCO2 since crustal production rates show little variability through the Late Triassic.  Together the results of this work lay the foundation for a revision of our understanding regarding the driving mechanisms behind Earth’s long-term carbon cycle toward a greater emphasis on weathering processes.


Convergent Evolution: Limited Forms Most Beautiful


Here's a new book on evolutionary theory just out by EPS' Prof. George McGhee!

Convergent Evolution: Limited Forms Most Beautiful

McGhee, G. R. 2011. Vienna Series in Theoretical Biology; Massachusetts Institute of Technology Press, Cambridge (MA), 322 pp.

Read more at Cambridge Press


Charles Darwin famously concluded On the Origin of Species with a vision of "endless forms most beautiful" continually evolving. More than 150years later many evolutionary biologists see not endless forms but the same, or very similar, forms evolving repeatedly in many independent species lineages. A porpoise's fishlike fins, for example, are not inherited from fish ancestors but are independently derived convergent traits. In this book, George McGhee describes the ubiquity of the phenomenon of convergent evolution and connects it directly to the concept of evolutionary constraint--the idea that the number of evolutionary pathways available to life are not endless, but quite limited. Convergent evolution occurs on all levels, from tiny organic molecules to entire ecosystems of species.McGhee demonstrates its ubiquity in animals, both herbivore and carnivore; in plants; in ecosystems; in molecules, including DNA, proteins, and enzymes; and even in minds, describing problem-solving behavior and group behavior as the products of convergence. For each species example, he provides an abbreviated list of the major nodes in its phylogenetic classification, allowing the reader to see the evolutionary relationship of a group of species that have independently evolved asimilar trait by convergent evolution. McGhee analyzes the role of functional and developmental constraints in producing convergent evolution, and considers the scientific and philosophical implications of convergent evolution for the predictability of the evolutionary process.

Product Details ISBN-10: 0262016427
ISBN-13: 9780262016421
Published: MIT Press (MA), 11/01/2011
Pages: 312
Language: English

Congratulations to Zuhal Seker

Congratulations to Zuhal Seker, who presented and successfully defended her MS Thesis on January, 5th, 2012, on Cretaceous Well-log and Sequence Stratigraphic Correlation of the Outer Continental Shelf and Upper Slope off of New Jersey. 

Cretaceous Well-log and Sequence Stratigraphic Correlation of the Outer Continental Shelf and Upper Slope off of New Jersey

  Thesis Director: Dr. Kenneth Miller

Committee members: Dr. Greg Mountain and Dr. Donald Monteverde



Distinct, regionally continuous Cretaceous sand bodies are present beneath the outer continental shelf and upper slope off of New Jersey that encompasses much of the basin known as the Baltimore Canyon Trough (BCT). These sand bodies are possible candidates for liquid CO2 sequestration. This thesis aims to delineate and correlate four distinct sand units (Middle Sandstone, Upper Logan Canyon, Lower Logan Canyon Sand units, and Missisauga Unit) and their suitability for CO2 sequestration that requires sufficient depth, porosity, permeability, spatial continuity and presence of cap rock. I have analyzed geophysical logs and biostratigraphic data from 11 wells to identify the lithostratigraphic units of the BCT and established three well log transects to demonstrate the spatial continuity of the target sand units.


The correlation of lithostratigraphic units along the dip profiles reveals the stratigraphic patterns of the target sand units. The Middle Sandstone Unit has a progradational pattern throughout the basin, spanning the Coniacian through Santonian. Weak continuity and presence of hydrocarbon-bearing intervals indicate that this unit is not suitable for sequestration. The Upper Logan Canyon Sand Unit has a progradational pattern, spanning the Albian through Cenomanian. This sand body has a spatial continuity in the northeastern part of the BCT area and includes thick porous sandstone beds sealed with impermeable rocks above, suggesting potential for sequestration. The Lower Logan Canyon Sand Unit follows a retrogradational pattern, spanning the Aptian through Albian. The Lower Logan Canyon Sand Unit promises more continuity towards the south, unlike the upper unit. The Lower Logan Canyon Sand Unit is more favorable as a sequestration target. The Missisauga Unit has a progradational pattern, spanning the Hauterivian through Aptian. This unit is very thick and continuous throughout the basin, including abundant porous sand beds sealed with impermeable beds. However, many gas-bearing intervals are present within this deeply buried unit, and the age control is ambiguous, thus, making it a less favorable to unfavorable sequestration target.



Congratulations to Etikha

 Congratulations to Etikha who presented and successfully defended her MS Thesis "Postrift Deformation of the Scotian Basin, Offshore Nova Scotia and Newfoundland, Canada: Insights from 2D and 3D Seismic-Reflection Data.  (Tuesday, December 20th, 2011).  For those of you not there, Etikha gave a nice presentation and handled questions quite well... from the audience and as I understand from her committee as well. Advisors: Martha Withjack and Roy Schlische, committee members Vadim Levin and Don Monteverde.

Once Etikha dots a few i's and crosses a few t's, she will be off to work with Exxon Mobil Indonesia


0 0 1 411 2347 Rutgers University 19 5 2753 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}


Postrift deformation of the Scotian basin, offshore Nova Scotia and Newfoundland, Canada: Insights from 2D and 3D seismic-reflection data


Thesis Directors:

Dr. Martha Oliver Withjack and Dr. Roy W. Schlische

The Scotian basin is one of a series of postrift basins located on the eastern North America passive margin. Using 2D and 3D seismic data, I have identified a variety of folds and faults that developed after rifting. Folds include secondary fault-related folds (e.g., fault-bend folds, fault-propagation folds, and fault-displacement folds) and folds associated with shallow salt structures. Folds associated with shallow salt structures are subparallel to the strike of deep-seated, basement-involved faults. Folded strata above salt structures is thick. The upward buoyancy force alone is not enough to cause the salt to pierce the thick overburden. Deep-seated deformation weakened the overburden and triggered salt movement.

Faulting in the study areas are related to the reactivation of deep-seated faults, salt movement, and non-tectonic deformation. Reactivation of deep-seated faults resulted in faults at shallow levels with normal and reverse separation that, respectively, were active from Cretaceous through middle Cenozoic (Miocene?) time and after the deposition of Early Cretaceous strata. Faults associated with deeper salt movement were active during the Early Cretaceous and again during the Cenozoic until Miocene time. Faults associated with shallow salt movement were active from late Early Cretaceous through middle Cenozoic (Miocene?) time. Other faults associated with shallow salt structures have reverse separation at depth and normal separation at shallow levels. Faults with reverse separation formed during early Early Cretaceous time. Faults with normal separation were active from Late Cretaceous time through early Cenozoic time. Polygonal faults are non-tectonic faults and associated with lithological changes. They were active from Late Cretaceous time through early Cenozoic time.

            In the Penobscot study area, episodic normal faulting during Late Cretaceous time and the presence of polygonal faults with a preferred orientation indicate NW-SE extension during Late Cretaceous-Early Cenozoic time.

            The NW-trending anticline along the Laurentian Channel resulted from reactivation of deep-seated faults. Faults with reverse separation formed beneath the anticline. Miocene channels are deflected from the anticline, whereas Pliocene-Pleistocene channels directly overly the anticline, indicating that the anticline was active during Miocene time. The anticline and subsidiary structures are subparallel to modeled seafloor displacement from the 1929 Grand Banks earthquake.