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Laser-induced breakdown spectroscopy will be used by the ChemCam instrument on the Curiosity rover to
obtain chemical analyses of the martian surface. Surficial and deeper hydrothermal processes on Mars have
produced a diverse family of chemical and clastic sedimentary lithologies from primary igneous rocks
through physical and chemical transport, deposition, and diagenesis. This study uses 16 samples from the
East African Rift (EAR) as martian analogues to assess use of LIBS to evaluate weathering reactions in sedi-
mentary rocks. Data were acquired at 9 m distance with samples under conditions designed to simulate
Mars. Use of external validation, in which a few sedimentary samples are added to the validation set, coupled
with choice of the first local minimum in the root mean square value in all the components of the validation
model, provides optimal results in this data set. Accuracy is measured using root mean square error predic-
tions for major elements in the sedimentary rocks, as expressed in wt.% oxides. Even lower errors can be
obtained by using a more focused training set. These results are sufficiently accurate to usefully characterize
the four competing kinds of chemical weathering reactions in paleosols (hydrolysis, oxidation, hydration, and
salinization).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

ChemCam, a remote sensing instrument package including a laser-
induced breakdown spectrometer (LIBS) and remote micro-imager
(RMI), will provide geochemical analyses and context imaging as
part of the Mars Science Laboratory (MSL) Curiosity rover payload
launched in 2011 (Maurice et al., 2005; Wiens et al., 2005). This will
be the first deployment of LIBS for remote extra-terrestrial quantita-
tive analysis. ChemCam will provide Curiosity with the innovative re-
connaissance capability of near-complete chemical analyses on spot
sizes ranging from ~175 μm to 500 μm at standoff distances of 1.5 m
to 7 m. LIBS was also on the payload of the Surface and Atmosphere
Geochemical Explorer (SAGE) mission to Venus that was selected as
a finalist for the next New Frontiers Mission Program of space ven-
tures to celestial bodies in our solar system. Several other countries
are also considering or planning to use LIBS on upcoming missions.

Thus LIBS is rapidly becoming part of the geochemists' toolkit for
planetary exploration.

The LIBS technique builds on the fundamentals of atomic emission
and inductively-coupled spectroscopy that are already familiar to
most geochemists. In LIBS, a laser pulse is focused onto a sample to
create plasma from which the optical emissions are recorded. The
major emitting species of the plasma are neutral atoms and ions in
the first and second ionization states of the elements comprising the
samples. LIBS spectra from the near-UV to near-IR of geological sam-
ples typically consist of dozens to hundreds of atomic emission lines.
The basis for qualitative and quantitative chemical analysis is the de-
pendence of the peak height and area on the abundance of that ele-
ment in the sample.

The simplicity and versatility of the LIBS technique have allowed it
to be applied to a wide variety of materials and substances in com-
mercial applications. However, because other robust microanalytical
methods for elemental analysis are available to geologists, there has
been only limited interest in geological applications of the LIBS tech-
nique (e.g., reviews by Harmon et al., 2005 and Pasquini et al., 2007).
Until very recently, few published mineral (McMillan et al., 2006,
2007; McManus et al., 2008; Alvey et al., 2010) or rock (Remus et
al., 2010) LIBS spectra existed, and the data were often acquired
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under disparate conditions that precluded direct comparisons be-
tween spectra. Systematic calibration curves, matrix corrections, and
procedures for spectral processing in complex mineral and rock sam-
ples did not yet exist. This situation is now changing as a result of the
planetary missions, and because of the potential for using LIBS in real-
time identification and discrimination of geological materials in the
field (Harmon et al., 2009), as well as in non-geological applications
(e.g. Ctvrtnickova et al., 2009; Colao et al., 2010; Fortes and Laserna,
2010), where its remote capabilities are advantageous.

LIBS applications have also benefitted from improvements in sta-
tistical analyses in recent years. Advanced statistical analyses are
more necessary for geochemical analyses than for other LIBS applica-
tions, given the varieties of compositions and surface conditions of
unprepared geological samples. Sirven et al. (2006) was among the
first to apply multivariate analyses to LIBS spectra of geological sam-
ples, investigating the accuracies of Cr analyses in 30 soil and 30 kao-
linite samples. Their study also compared partial least squares (PLS)
regression with predictions from neural network analyses. It was fol-
lowed (Sirven et al., 2007) with a study of classification of different
rock types by multivariate analysis of LIBS data. Clegg et al. (2009) ap-
plied multivariate analysis techniques to analyze the LIBS spectra of
18 disparate igneous and highly-metamorphosed rock samples. Par-
tial Least Squares (PLS) analysis was used to generate a calibration
model from which compositions of samples extracted from that data-
set could be analyzed. Techniques of classification and discrimination
of geological materials by PLS-DA (partial least squares discriminant
analysis), PCA (principal components analysis), and SIMCA (soft inde-
pendent modeling of class analogy) were also investigated by Clegg et
al. (2009), Gottfried et al. (2009), and Harmon et al. (2009). Tucker et
al. (2010) were the first to use a large (100 sample) dataset of LIBS
spectra of rocks to predict major element compositions in unknown
samples.

Aswithmost analytical techniques, LIBSworks bestwhen the stan-
dards used for calibration have compositions similar to those of the
unknowns to be studied. For themultitude of possible geological com-
positions that might be encountered on Mars, this presents an analyt-
ical challenge. The useful predictive models developed by Tucker et al.
(2010)were successful in part because they used igneous rocks to pre-
dict the compositions of other igneous rocks. However, little is known
about the effects of bulk composition, mineralogy, and crystallinity
(presence of glass vs. crystals of varying sizes) on the predictive abili-
ties of LIBS. For example, can a calibration set built from a wide range
of igneous rock compositions effectively predict the compositions of
sedimentary rocks derived from igneous precursors?

These issues are of paramount importance given the preponder-
ance of sedimentary rocks that may be present on Mars. The martian
surface has abundant sedimentary materials, as shown, for example,
by orbital imagery, especially of the Arabia region (Edgett and
Malin, 2002; Bibring et al., 2005, 2006; Gendrin et al., 2005), and
the striking evaporate deposits at Meridiani (e.g., Squyres et al.,
2004; McLennan et al., 2005; Squyres and Knoll, 2005; Morris et al.,
2006). Critical questions include the origin, extent, and duration of
large bodies of water responsible for sediments in regions such as
Arabia and Meridiani. Studies of martian meteorites (e.g., Gooding
et al., 1991; Gooding, 1992), MER rover observations, and geochemi-
cal calculations (e.g., Griffith and Shock, 1997) make it clear that sur-
face and deeper hydrothermal processes have produced a diverse
family of chemical and clastic sedimentary lithologies through physi-
cal and chemical transport, deposition, and diagenesis. This has un-
doubtedly led to complex sedimentary mineralogy and chemical
compositions.

So to enable LIBS data to best predict compositions of those wide-
ranging martian lithologies, this paper extends the work of Tucker et
al. (2010) by exploring various methods to predict the major element
compositions of a genetically- and texturally-distinct set of sedimen-
tary rocks derived from igneous precursors. For the current study, we

selected a suite of sedimentary samples from the East African Rift
(EAR) (Ashley and Driese, 2000) as good martian analogs. The master
training set (sometimes called a calibration suite) with which our sta-
tistical models can be built includes the 100 igneous samples used by
Tucker et al. (2010), a suite of phyllosilicate standards (many of
which are logical end-products of alteration of igneous rocks), and
the sedimentary rock spectra themselves. Our hypothesis is that the
sedimentary rocks might be compositionally somewhat intermediate
between the parent extrusive rocks and their ultimate breakdown as-
semblages, though interactions with water would obviously result in
cation exchange into and out of the sedimentary rocks.

We here explore using variations of our training set to understand
optimal model parameters and choice of training set, and to then de-
termine the best possible predictions of sedimentary rock composi-
tions using the data in hand. These data are then used to evaluate
the extent of chemical weathering of the sedimentary rocks studied.
This study thus selects an appropriate calibration (training) set to
predict rock compositions, and begins to address the potential effects
of bulk composition, mineralogy and paragenesis on LIBS spectra,
which are fundamental issues in the application of remote LIBS spec-
troscopy to geological studies. The goal of this paper is thus to make
quantitative geochemical analyses on bulk samples of sedimentary
samples, in order to assess their ability to understand chemical
weathering processes, as well as to provide the basis for and road-
map to expanding our work into a larger range of rock types and
samples.

2. Background

Laser-induced breakdown spectroscopy (LIBS) is a type of atomic
emission spectroscopy that is closely related to the more
commonly-used geological technique of inductively-coupled plasma
atomic emission spectroscopy (ICP-AES). In both techniques, as in
any type of atomic spectroscopy, the analysis relies on quantized
valence-electron transitions that occur in the UV, visible, and near-
IR regions of the energy spectrum. To produce narrow emission
lines with diagnostic energies, samples must be atomized, with no re-
sidual bonding remaining. After being excited, electrons decay from
high-energy states to lower states, emitting photons with wave-
lengths that are characteristic to each atom or ion.

In traditional geological applications such as atomic absorption
(AA) or ICP-AES, samples are commonly dissolved in solutions. LIBS
differs from these methods in that a pulsed high power laser is used
both to ablate and excite atoms without sample preparation. Emis-
sion from the ions and atoms in the plasma is collected by a fiber
optic system and analyzed by a spectrometer and detector. The
ChemCam instrument spectral resolution is ~0.2 nm FWHM in the
UV (240–335 nm) and blue (385–465 nm) regions and 0.65 nm in
the VNIR (500–850 nm), which was reproduced in the tests reported
here.

LIBS instruments have several advantages that make them well-
suited to planetary exploration, as well as routine field work on
Earth. LIBS can be set up to operate semi-remotely, with a telescope
collecting the plasma light up to hundreds of meters away (e.g.,
Palanco et al., 2006). No sample preparation is needed; in fact, the
laser can ablate through rock coatings, making it possible to create
depth profiles of elemental concentrations. The laser can profile to
depths up to ~1 mm in a rock, easily “burning” away dust layers
and chemical weathering coatings in a very short time. The laser
can also be focused to an extremely small spot size (≤0.5 mm at
7 m), allowing analysis of small objects such as or the “blueberries”
observed at Meridiani Planum on Mars. All elements are simulta-
neously analyzed, and the entire analysis can be completed in sec-
onds or minutes.

The main disadvantage of LIBS for geological samples lies in the
variation of peak intensities and areas caused by interactions in the
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plasma that are a function of chemical composition. These chemical
matrix effects are material, optical, and plasma properties that influ-
ence the ratio of a given emission line to the abundance of the element
producing that line. Chemical matrix effects are directly related to the
elemental and molecular composition of the sample and ubiquitously
perturb the LIBS plasma. They are associatedwith to the relative abun-
dances of neutral and ionized species within the plasma, collisional in-
teractions within the plasma, laser-to-sample coupling efficiency, and
self-absorption. Minor or trace elements in the sample may cause
chemical matrix effects on major element emission lines and vice
versa. Local atmospheric composition and pressure also significantly
influence LIBS plasma intensity because the local atmosphere and
the breakdown products from the atmospheric species interact with
the ablated surface material in the plasma (Cremers and Radzeimski,
2006). There is as yet no theoretical model that allows prediction of
matrix effects (i.e., there is nothing analogous to the ZAF correction
commonly-used in electron microprobe microanalyses, which adjusts
for matrix effects based on atomic number effects, X-ray absorption,
and secondary fluorescence), so correction schemes must be devel-
oped empirically (more closely akin to the Bence and Albee (1968)
correction) and/or overcome using statistical methods and/or large
data sets to derive predictive algorithms. The one possible exception
to this is the calibration-free LIBS technique, which attempts calibra-
tion from first principles (e.g., Ciucci et al., 1996). However, in addition
to making the assumption of local thermal equilibrium during the
brief life of the plasma, this requires experimental details that are
not available from the ChemCam experiment.

Moreover, the extent of the dependence of mineralogy, rock tex-
ture, and crystallinity on LIBS spectra is poorly known at this time,
but is the subject of ongoing work. The current study contributes to
this body of work by examining the importance of rock type on pre-
dicting chemical compositions using LIBS.

3. Geological context

For this work, we compare and interrelate three suites of rocks
representing a potential continuum of fresh to completely-
weathered rocks on Mars. Because most of the martian surface was
originally igneous (probably basaltic, cf. McSween et al., 2009), the
first suite comprises various igneous rock types with disproportionate
representation of basalts. A second suite is composed of various phyl-
losilicate minerals that are the end products of complete hydrolysis
(chemical weathering of basalts through interactions with water) of
basaltic silicate minerals. Given these two “end members,” we seek
to predict the compositions of samples in the third suite, which is a
set of sedimentary rocks that formed as a result of the alteration of
basaltic precursors in the East African Rift.

The “century set” consists of 100 igneous rocks with a wide range
of compositions from Tucker et al. (2010). In that suite, the majority
of samples are basalts by composition, but samples of higher and

lower silica content are included to extend the range of calibration
to the entire range of naturally-occurring igneous rock compositions.
These samples are reasonable proxies for igneous rocks that might be
found on Mars based on meteorite, orbital, and rover data (McSween
et al., 2009). The most notable difference is that martian basalts are
slightly more rich in FeO than terrestrial occurrences (16–18 wt.%
vs. 10 wt.%), but this data set encompasses samples with FeO covering
that range (see Fig. 4 in Tucker et al., 2010).

Spectra of a suite of 17 phyllosilicate standards from Tucker et al.
(2008) were also acquired; these are a combination of Clay Minerals
Society standards and standards available from Brammer Standard
Company, Inc. A summary of the compositions of these two data
sets, along with those of the sedimentary samples introduced here,
is given in Table 1.

The third suite of samples, and the focus of this study, consists of
sedimentary samples that were selected from the East African Rift
(EAR) suite studied by Ashley and Driese (2000) for a number of rea-
sons. Rift valleys are prominent features on the surfaces of both Mars
and many continents of Earth. Valles Marineris (~8000×200×5 km)
dominates the face of Mars, and on Earth the EAR (~6000×150×
3 km) is by far the largest modern rift system. Both rifts are formed
by extensional tectonics producing thick sequences of basalt flows
and volcaniclastic sediments and expose significant sections of
planetary crusts. The EAR is centered in the low latitudes (tropics)
and because of the low elevation of the EAR floor, the rift has a
localized climate system that is dominated by arid weathering and
erosion where evaporation is 4–5 times higher than precipitation.
The regional settings of both EAR and Valles Marineris showmorpho-
logical evidence of arid to semi-arid landscapes: playa lakes and
ephemeral rivers and groundwater-fed discharges. The EAR soils
(Inceptisols to Aridisols) that form in evaporative basins precipitate
sulfates (gypsum and anhydrite), chlorides (halite and sylvite), and
trona. In Valles Marineris, and the near-equatorial region of Mars
around it, the paleo-climate is known in less detail, but appears to
have been dominated by dryland processes. The EAR system may be
a good Earth analogue for areas on Mars suggesting rifting, as well
as martian surface sediments, in general, in terms of tectonics, petrol-
ogy, and climate.

Volcanism in the EAR ranges in composition from basalt to andes-
ite to trachyte and their alkaline/peralkaline equivalents; SiO2

(49–53%), FeO (10–20%) MgO (6–12%) and CaO (~20%) (McHenry,
2005). Compositions inferred from orbital observatories (i.e. spectral
data) suggest the predominance of basalts on the surface of Mars
within 40° of the equator. Spectral data from Mars Express and the
Mars Reconnaissance Observer (MRO) suggest large areas of phyllosi-
licates (clay) and evaporites (Fairen et al., 2010). Analyses of the soil
samples collected by the Viking landers in 1976 indicate iron-rich
clays consistent with weathering of basaltic rocks (Francis, 1993).
Weathering and erosion in both sites have produced fans of volcani-
clastic debris derived from these lavas.

Table 1
Means and standard deviations of three data sets used.

Century set Phyllosilicate set Sedimentary set

Mean 1σ Min Max Mean 1σ Min Max Mean 1σ Min Max

SiO2 52.53 9.69 38.23 76.99 53.22 9.41 34.70 70.10 51.89 11.53 12.85 58.38
Al2O3 12.92 3.43 2.28 22.96 16.48 12.28 0.69 39.70 13.54 3.36 2.59 15.74
TiO2 2.04 1.40 0.08 7.04 0.42 0.61 0.00 2.08 1.10 0.31 0.37 1.43
Fe2O3T 10.79 4.23 0.94 20.24 9.51 13.86 0.22 37.42 7.68 1.97 1.97 9.67
MgO 8.91 7.40 0.00 33.49 5.38 6.78 0.03 23.30 5.10 1.45 3.74 7.60
MnO 0.17 0.06 0.01 0.29 0.03 0.04 0.00 0.11 0.24 0.05 0.17 0.34
CaO 8.12 3.66 0.31 17.79 3.18 5.92 0.00 23.40 3.87 8.97 0.38 34.52
K2O 1.35 1.60 0.05 5.82 1.29 2.78 0.02 7.83 2.07 0.54 0.59 2.75
Na2O 2.56 1.15 0.00 6.08 0.40 0.69 0.00 2.10 4.68 1.59 2.65 8.28
P2O5 0.43 0.56 0.01 2.69 0.09 0.21 0.00 0.80 0.20 0.04 0.08 0.27

1σ=standard deviation.
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In the EAR, smectite clay and zeolites develop during weathering,
pedogenesis and early diagenesis, after burial in alluvial/debris fans,
soils, and playa saline/alkaline lakes (Hay and Kyser, 2001). Research
in Plio-Pleistocene rocks of Olduvai Gorge (3°S, on the margin of the
EAR) reported that compositional signatures from clay minerals pro-
duced during early pedogenesis are inherited from their parent
source rocks (Hover and Ashley, 2003). Sediments sourced from vol-
canics contain highly-disordered dioctahedral smectite. Smectite in
soils developed further from volcanic source rocks that have more
Fe (III) and Mg than soils closer to source rocks. Diagenesis in surface
sediments involves replacement of original Al-rich smectite by neo-
formed trioctohedral Mg-rich smectite (stevensite). Neoformed cela-
donite replaces smectite in the most saline lake sediments. Zeolites
(mainly Na-rich analcime) also appear to be primary pedogenic to
early diagenetic minerals formed by replacement of volcanic rock
fragments and as pore-fillings in root and animal biopores (Ashley
and Driese, 2000). In that study, whole-rock X-ray fluorescence
(XRF) data were used to evaluate chemical variations in the soil fol-
lowing the molecular ratios approach of Retallack (2001) and a
mass-balance approach (cf. Brimhall et al., 1991a,b).

A suite of 18 EAR rocks representing six EAR lithologies was stud-
ied (Table 2). The parent rock type is represented by the red paleosol,
and the derived lithologies are silty clay, lapilli-rich clay, waxy clay,
calcareous waxy clay, and tuff and tuffaceous clay. Ashley and
Driese (2000) powdered their samples to obtain bulk chemical ana-
lyses using XRF; those XRF results were used as the “true” composi-
tion for each sample. For 16 of their samples, there was enough
leftover rock powder to provide the 3 g of sample needed to press
powder pellets for the LIBS analyses.

4. Experimental methods

About 150 g of each sample was crushed to b45 μm particle size
(about an order of magnitude smaller than the LIBS beam diameter)
in a Spex tungsten carbide shatterbox in order to mitigate inhomoge-
neity and equalize grain size and porosity. Aliquots of this powder
were used for both XRF in the original study (Ashley and Driese,
2000), and LIBS for the current study. Major and minor elements
were measured in the University of Tennessee (UT)-Knoxville, Earth
and Planetary Sciences Department. Powdered soils were oven dried
at 608 °C and were pressed into pellets using crystalline boric acid
as a binder. Paleosol samples were analyzed for selected major,
minor, and trace elements using an EG&G ORTEC TEFA III tube-
excited X-ray fluorescence (XRF) analyzer (Singer and Janitzky,
1986). XRF analyses and errors are reported in Ashley and Driese
(2000). A clays protocol (prepared at UT-Knoxville) that employed
appropriate high-iron clay soil and shale standards was used for

quantitative analyses; analytical uncertainties for XRF analyses are
also reported in Ashley and Driese (2000).

For LIBS sample preparation, 3–5 g of sample was poured into an
aluminum cup and pressed under ~15 metric tons of pressure. No
binders were added. LIBS analyses of the pellets were performed at
Los Alamos National Laboratory (LANL) using instrumental and envi-
ronmental conditions configured to mimic those on Mars with the
ChemCam instrument. Because of known atmospheric pressure effects
on LIBS spectra, samples were placed in an evacuated sealed chamber
filled with 7 Torr (0.009 atm) CO2 to simulate the martian atmosphere.
Samples were probed with a Nd:YAG laser operating at 1064 nm and
10 Hz, set to 17±1 mJ per shot at a 9 m standoff distance. Spectra
were recordedwith threeOceanOpticsHR2000 spectrometers covering
the UV, blue, and visible/near-infrared ranges nearly continuously from
220 nm to 930 nm. The spectrometer integration was set to 1 s and five
averageswere collected from each sample spot such that each spectrum
represented the emission from 50 laser shots. Even though the grain
size is smaller than the laser spot, we probed the five spots to further
compensate for possible inhomogeneities. Sample spectra of each of
the six rock types are shown in Fig. 1.

5. Data pre-processing protocols

The Ocean Optics software summed the 50 shots for each spot to
correct for variations in shot intensity over time, and also subtracted
dark (non-laser) backgrounds. Hot pixels were then removed from
each of the five raw data files acquired from different spots on each
sample through a combination of smoothing and manual inspection
of each spectrum. Three subsequent pre-processing steps were under-
taken, and are described in Appendix A. From them, we obtained one
wavelength-registered, background-subtracted, mean spectrum for
each sample, which was then used for subsequent statistical analyses.

Elemental analyses were re-scaled to ensure that the PLS assigns
equal importance to all elements. As recommended in Tucker et al.
(2010), each elemental concentration in oxide wt.% was divided by
the standard deviation of that element's distribution: Yi′=Yi/σy.
This procedure rescales all elemental distributions to have a variance
of 1. It must be noted that re-scaling is only appropriate when the
original elemental distribution is approximately Gaussian.

6. Statistical analysis

6.1. Overview

Data were analyzed using software written in GNU R (R
Development Core Team, 2010). This customized R software wraps
routines from several packages including hyperSpec (Beleites and
Sergo, 2011), Peaks (Morháč, 2008, 2009), and PLS (Wehrens and
Mevik, 2007) and specifically applies them to LIBS data sets. Hyper-
Spec is an unpublished software package used for convenience here
to make programming with spectral data types more tractable.

This study uses multivariate regression to model the relationship
between the LIBS spectrum and elemental composition of a geological
sample. The spectra are recorded in a matrix X with n rows (one for
each sample) and p columns (one for each wavelength bin). The re-
sponse variables are stored in a matrix Y, with one row per sample
and one column per major element. The familiar equation for multi-
ple linear regression models elemental composition as a linear combi-
nation of channel intensities. The equation below is the standard
formulation of this model (sometimes called multiple linear regres-
sion) where each βi is learned from the training set:

Yj ¼ β0 þ β1X1 þ β2X2 þ…þ βnXp: ð1Þ

Normally, a linear regression model like this is fit using Ordinary
Least Squares (OLS), which is the standard procedure for finding a

Table 2
Rock types for sedimentary rocks used in this study.

Sample name Location Depth in core (m) Rock group

46A-2 Trench 46A −140 Red paleosol
46A-9 Trench 46A 0 Red paleosol
46B-1 Trench 46B −160 Tuff and tuffaceous clay
46B-2 Trench 46B −150 Tuff and tuffaceous clay
46B-3 Trench 46B −140 Waxy clay
46B-5 Trench 46B −120 Red paleosol
46B-16 Trench 46B −10 Red paleosol
46C-2 Trench 46C −195 Waxy clay
46C-3 Trench 46C −170 Waxy clay
46C-4 Trench 46C −160 Lapilli-rich clay
46C-5 Trench 46C −150 Calcareous waxy clay
46C-7 Trench 46C −130 Red paleosol
86-1 Trench 86 −170 Calcareous waxy clay
86-2 Trench 86 −160 Silty claystone
86-3 Trench 86 −150 Silty claystone
86-4 Trench 86 −140 Silty claystone
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coefficient vector β. Unfortunately, in the case where p≫n, the coef-
ficient vector β produced by an OLS fit is far from optimal, and can
lead to very poor predictions of unknown samples. Because our spec-
tra have 6144 channels (p) and we have only 100 geological samples
(n), OLS is not an appropriate technique for estimating β.

The weakness of OLS in this situation is two-fold: first, many of the
predictors (channels) are highly correlated, violating the assumption
of independence that is inherent in multiple linear regression. Spec-
tral peaks tend to be composed of several (5–20) channels, so our
data contain many small groups of highly correlated predictors. Sec-
ond, there are very many predictors, most of which may simply be

irrelevant for a given element. The OLS procedure is not well-suited
at giving high correlation values to the best predictors when the
ratio of irrelevant to relevant predictors is very large.

To solve this problem, shrinkage methods are used to transform
the standard multiple linear regression problem into a smaller equa-
tion. LIBS data can be viewed as a collection of n points in p-
dimensional space. If the dimensionality of this space can be shrunk-
en while maintaining a high-fidelity representation of the original
data, OLS can be used to generate a good β coefficient vector, not
for the original p columns of X, but for some X′ with a small number
of columns that still adequately represents the data.

Fig. 1. LIBS spectra of sedimentary rocks representing each of the six rock types studied. Spectra were recorded with three Ocean Optics HR2000 spectrometers covering the UV
(top), blue (middle), and visible/near-infrared (bottom) ranges nearly continuously from 220 nm to 930 nm. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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PLS is a widely-used shrinkage technique that implements this
idea. The PLS transformation is not simple to describe mathematically,
and there are numerous subtleties involved in developing algorithms
to compute it. PLS is fundamentally based on principle components
analysis, a similar but much simpler dimensionality-reducing trans-
formation, which is described in detail in Hastie et al. (2009) and
Jolliffe (2002). Based on this foundation, additional specifics for PLS
are given in Hastie et al. (2009), Frank and Friedman (1993), and the
overview paper by the inventor of the technique (Wold et al., 2001).

Conceptually, PLS is a transformation that takes a matrix X and a
desired number of dimensions k, and then projects X down into
that number of dimensions. Thus, each point in p-dimensional space
is mapped to a point in k-dimensional space k≪p. Though it seems
that much data are being discarded, this is exactly what is desired.
It is analogous to the compression that digital music files undergo
to save space on consumer MP3 players: the important part of the sig-
nal remains in the reduced data. The PLS transformation also guaran-
tees that the new dimensions are orthogonal to each other: in
statistics terminology, this means that they are uncorrelated despite
the high co-linearity of the original data. Finally, PLS outputs a vector
v that can be multiplied by any p-dimensional point to embed that
point into the k-dimensional space. This allows use of an OLS fit that
produces a value for the β coefficient vector in the reduced space to
predict unknown samples.

The dimensions of the reduced space are called components. The
amount of compression that is ideal for any given data set is a charac-
teristic of that data set, and must be determined by testing, as will be
explained in Section 7 below.

This study utilizes two different types of PLS (Hastie et al., 2009).
PLS-1 regresses a single response variable (concentration of a single
element) against the predictor variables (spectra). PLS-2 simulta-
neously regresses multiple response variables (elemental concentra-
tions of the ten major elements in rocks) against the predictors,
taking advantage of natural correlations between elements. Both
techniques explain the variance in both X and Y. The tests described
herein use only the major elements Si, Al, Ti, Fe, Mg, Mn, Ca, Na, P,
and K for the Y variables; the X variables are the 6144 channels of
the three detectors.

Three different data setswere used to predict the sedimentary rock
compositions: C (the century set of 100 igneous samples), P (the 17
phyllosilicates), and C+P (both data sets combined). The sedimenta-
ry data set (S), which consisted of 16 samples total, was randomly split
into two groups of eight samples each: one for validation to tune pa-
rameters of the model (SV), and one for use as a test set to apply de-
rived parameters and provide an estimate of how good the
generalization of the data will be with those fixed parameters (ST).
The C, P, and C+P data sets were used to train both PLS-1 and PLS-2
models. A summary of our data processing steps is given in Fig. 2.

For both PLS-1 and PLS-2 models, validation was done externally
using the SV set (step C2 in Fig. 2) and internally (step C1 in Fig. 2)
using a jackknife or “leave one out” full cross-validation as recom-
mended in Mevik and Cederkvist (2004) for PLS (k-fold validation).
In the latter kind of validation, a PLS model is built from n−1 spectra
out of n training set samples, and the composition of the sample left
out is predicted from the reduced PLS model. This procedure is re-
peated, leaving out and predicting each of the samples one at a
time. To provide an effective means of comparing results from differ-
ent models, we use the root mean square error of prediction (RMSEP),
which guesses the predictive power of the model on unseen data ac-
quired on remote samples (Hastie et al., 2009).

7. Effects of selection of model parameters from internal vs. exter-
nal validations

To select the number of components that should be used to pre-
dict elemental composition, we created validation plots for the C, P,

and C+P data sets (steps C1 and C2 in Fig. 2) and used those values
to select the number of components to be used in subsequent testing
of the models. Figs. 3–5 show the three sets of validation plots, each
comparing internal and external validation results.

Careful selection of the number of components to be used in any
predictive model is highly dependent on the characteristics of the
training and validation sets. In our situation, we have two training
sets, one large (C) and one small (P), to predict the compositions of
a validation set (SV). All RMSEP values for external validations are di-
rectly comparable because they are being tested on the same predic-
tion set (SV). These calculations were done using both PLS-1 and PLS-
2, but the resultant shapes of the plots are indistinguishable, with the
RMSEP values for PLS-1 being slightly lower. Thus the following dis-
cussion refers to either type of PLS.

1. For C only, the internally-validated plots (Fig. 3) generally show a
monotonic decrease in RMSEP as the number of components in-
creases, presumably because all the samples in that data set are
compositionally similar. Alternatively, the externally-validated
plots, which use the C set to predict the sedimentary rock SV com-
positions, consistently suggest the use of a lower number of com-
ponents than the internally-validated plots. This makes sense
because the sedimentary rocks are fundamentally different from
those in the C set, and this reflects a cut-off point past which the
C-based model is too biased (specialized) towards igneous rock
compositions to be useful for predicting the SV rocks. The lesson
learned from this comparison is that no single number of compo-
nents works for every compositional variable, suggesting that the
models must be finely-tuned. Moreover, when using a training
set to predict an unknown of a distinct rock type or composition,
different model parameters would be implied for internal and ex-
ternal validation.

2. If we use the 17-sample phyllosilicate (P) data set for the same
comparison (Fig. 4), results demonstrate the instability of predic-
tive models based on small training sets, as the numbers of compo-
nents increases in both the internally- and externally-validated
runs relative to the C set (Fig. 3). This result means that the phyl-
losilicate data set alone cannot even predict its own constituent
sample compositions very well, and thus is unlikely to be very use-
ful in predicting compositions of anything else. This problem likely
arises from the small size of the training set and the disparate com-
positions represented in it (Table 1). Note that the samples in all
three data sets used here cover approximately the same range of
composition space, but they do so with very different distributions.
These results raise a cautionary flag for interpretation of other pre-
vious studies that used very small sample sets and less well-
chosen methods for selecting the number of components in their
models, especially in situations where the training set samples
have very different compositions from the unknowns.

3. The C+P data set has different compositional diversity, but nei-
ther C nor P is very similar to SV for all variables. Combining the
phyllosilicates with the igneous rocks does not have any really sig-
nificant impact on the parameters of the validation models, and
the same trends are seen as for the C set alone. Again, the
internally-validated plots (Fig. 5) show a general decrease in
RMSEP as the number of components increases and the
externally-validated plots suggest that use of a lower number of
components could be advantageous on test data. Also, it is appar-
ent from the external validation set that the number of compo-
nents for all elements is not the same, so that a specific number
of components should be chosen individually for each element.

8. Test results

The most important goal of this paper is to determine how well
compositions (and thus parageneses) of unknown samples on Mars
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that happen to be sedimentary rocks could be predicted. As described
in Section 6 above, we will base these calculations on the composi-
tions of the eight samples in the sedimentary rock test set (ST) that
has consistently been excluded from any training set.

RMSEP values obtained by use of varying numbers of components
are used to predict each element (steps D and E in Fig. 2). We here
test two basic methods for choosing the number of components
based on the validation results:

A. Starting from the left (in Figs. 3–5) at the lowest number of compo-
nents (0, which is the intercept), choose the first local minimum
encountered. For example, in Fig. 4, this would be at 6 components
for SiO2 (1st local minimum model). This procedure is recom-
mended by Mevik and Wehrens (2007) to avoid overfitting.

B. Use the number of components that gives the absolute lowest
value for RMSEP for each element (global model).

We arbitrarily chose to evaluate 1–15 components only because
that is the maximum possible for the 17-sample phyllosilicate data
set. This choice was made because in general, RMSEP values are ei-
ther nearly constant at values higher than 15, or they start to in-
crease again with higher numbers of components due to
overfitting the data. Fig. 6, which shows an internal validation
based on the century set alone, provides an uncomplicated example
of this effect.

These tests compare how the various methods of validation would
perform on totally unseen data. Results are given in Tables 4 and 5,
which show the minimum number of components and RMSEP values
for PLS-1 vs. PLS-2 for internally vs. externally-validated data using
the C, P, and C+P validation models. Note that comparisons between
PLS-1 and PLS-2 in terms of numbers of components must be made
with care to avoid over-interpretation, because we are projecting
along different directions using distinctive criteria.

Fig. 2. Flowchart of data analysis steps used in this study. Sedimentary rock compositions are best predicted using the models created in step B (particularly C+P, which uses both
the 100 igneous rocks and 17 phyllosilicates in the training set) and a number of components chosen by externally-validated (step C2), global-minima in the validation plots (steps
D, E2, and F).
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Consider the case of CaO as an example, and compare results for
the externally vs. internally-validated global model for PLS-2 in
Table 4. The internal model (validated without using data from any
of the sedimentary rocks) selects 13, 14, and 16 components to pre-
dict CaO in the test set using the C, P, and P+S models. The high
number of components here reflects a highly-customized fit to the
specific characteristics of the C, P, and C+P data sets that might not
be useful over a broader range of compositions. However, the associ-
ated RMSEP values for predictions of CaO in the test set samples are
still reasonable, with values of 2.64, 0.80, and 0.83 (Table 5; in units
of wt.% oxide). In contrast, the externally-validated model that in-
cluded the SV data as part of the validation needs only 9, 5, and 5

components for predictions of the test set based on the C, P, and
P+S validation models, resulting in even lower RMSEP values of
0.64, 0.80, and 0.72 (again in units of wt.% oxide). Here, the low num-
bers of components for C and C+P imply that the resultant PLS ex-
pressions should generalize well to the sedimentary rock data. The
15 components needed by the P model suggest that the phyllosilicate
models are too self-specific to be useful in predicting the sedimentary
rocks. Higher numbers of components reflect increasing specializa-
tion that allows them to predict well only unknowns that closely re-
semble the samples in the training set. This effect is also seen for
Al2O3, Fe2O3T, MgO, and P2O5. For the other elements, results from in-
ternal and external validation are very similar.

Fig. 3. RMSEP plots comparing the errors resulting from predictive models that use either internal (gray) or external (black) validation based on use of the 100-sample igneous rock
suite alone. Internal validation is based on only the 100 samples and uses leave-one-out cross-validation. External validation is built from the 100 igneous samples and predicts the
compositions of eight randomly-selected sediments. Note that the minima vary from element to element.
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Of all the models shown in Table 5, the lowest overall values of
RMSEP (which are the confidence limits of the predictions in the units
of the original measurements) can be arbitrarily evaluated from the
sums of the RMSEP values for each of the elements in any column. By
this metric, the externally-validated models using both the century set
of igneous rocks and the phyllosilicates along with the first local mini-
mum to select an appropriate number of components for each element
yield the best results for predicting the composition of the sedimentary
rocks (other than using the sedimentary rocks themselves; see below).
PLS-1 and PLS-2 are roughly comparable here, with PLS-1 slightly better
than PLS-2 for this specific comparison.

Overall, results of this study do not suggest a clear preference for
either PLS-1 or PLS-2. There are (at least) two competing factors
that determine the relative efficacy of PLS-1 vs. PLS-2. Elements in
the plasma are undoubtedly interacting, which would theoretically
suggest that PLS-2, which can account for interactions between ele-
mental concentrations, should yield better results. On the other
hand, PLS-1 is not affected by the aggregate summed errors on the in-
dividual elemental analyses. In our results, the far-right columns of
Table 5 suggest that PLS-1 yields slightly better results overall when
the global minimum number of components is used, while PLS-2 gen-
erally does a better job employing the first local minimum number of

Fig. 4. Validation plots comparing internally- and externally-validated predictive models based on use of the 17 phyllosilicate samples only. Internal validation uses only the 17
samples along with leave-one-out cross-validation. External validation uses the model built from the 17 phyllosilicates to predict the compositions of eight randomly-selected sed-
iments. For most elements, these phyllosilicate predictions are much worse (i.e. RMSEP values are significantly larger). Compared to the plots from internal validation of the C set in
Fig. 3, these internal predictions are very unstable.
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components (Fig. 7). However, these relative improvements may be
element-specific or the result of random fluctuations.

9. Discussion

This project represents a test case for a difficult statistical problem
relating to this application. The general problem is the situation
where there are several sets of data that differ in some important as-
pect (in this case, geological provenance), but are in many ways sim-
ilar (here, LIBS spectra of rocks composed mostly of the same ten
elements). The simplest instance of this problem would be a case
where there is one giant data set A (e.g., our 100-sample C set) and
one small data set B (the 18), and a prediction task is being

undertaken on B. If A and B are mostly similar, is it possible to lever-
age A to do better at predicting B than just using B alone? Whether or
not it is possible to do this is highly dependent on the specifics of any
given problem.

Thus this project addresses the issue of whether or not it is pos-
sible to cleverly combine multiple similar (yet different) data sets
to boost performance on each individual task of predicting chemical
composition. This paper is a necessary test of feasibility for this ap-
proach in the geologic LIBS setting. The tests presented in this paper
are important because there is no theoretical/analytical way to
show that this methodology is possible for any given statistical
problem. Our results demonstrate that combining multiple data
sets for the purpose of predicting subsets is not only feasible, but

Fig. 5. Validation plots comparing internally- and externally-validated predictive models based on use of the 100 igneous samples combined with the 17 phyllosilicate samples.
Internal validation uses only the 117 samples along with leave-one-out cross-validation. External validation uses the model built from the 117 spectra to predict the compositions
of eight randomly-selected sediments. For most elements, these predictions have the lowest values of RMSEP compared with Figs. 3 and 4.

144 M.D. Dyar et al. / Chemical Geology 294-295 (2012) 135–151



Author's personal copy

probably necessary to routinely obtain accurate predictive results
for small subsets from very large, diverse training sets.

The applied goal of this project is to determine how best to use re-
mote LIBS data to predict compositions of sedimentary rocks and un-
derstand the extent of their chemical weathering when they are
encountered on Mars. To that end, Table 5 shows that the efficacy of
using the first local minimum in the validation plots (model A from
above) vs. the global minimum method for determining the number
of components to be used (model B from above) is highly model-
dependent. The first local minimum infers the number of components
by effectively customizing or reducing the specificity (bias) of the
model to the data set on which it is based. Overall, the first local min-
imum does a better job of predicting the compositions of the sedi-
mentary rocks, especially when externally-validated, than using the
global minimum to determine the proper number of components.
For these samples, results from PLS-1 and PLS-2 are roughly compara-
ble. In general, the externally-validated first local minimum model
does the best job of producing predictions on the test set with mini-
mum RMSEP values, so this can be followed as a general rule for spec-
tra of geological samples like those used herein. However, use of
external validation presumes prior knowledge of the rock type of
the unknowns. Comparing only the internal validation models, the
PLS-2 model using the first local minimum for component number se-
lection and both the igneous rocks and the phyllosilicates in the train-
ing set gives the best (lowest) values for RMSEP. These RMSEP errors
apply to a scenario on Mars in which the rocks being analyzed have
completely unknown compositions.

What happens if only sedimentary rock compositions, rather than
the more universal igneous plus phyllosilicate-based training set, are
used to predict sedimentary rock compositions? This question probes
the hypothesis that using a refined training set of samples intention-
ally chosen to resemble the unknown in terms of rock type (i.e., after
an initial investigation as discussed above) will yield improved ele-
mental predictions over that of a more universal training set. We do
not at this time have an additional suite of well-characterized sedi-
mentary rocks to use for this test. However, using the sedimentary
rocks to predict their own compositions using a simple leave-one-

out, internally-validated cross-validated model with PLS-1 and the
first local minimum number of components yields the results
shown in the lower half of Table 5 in the fifth column. This calculation
shows elemental RMSEP values for the sedimentary rocks as a stand-
alone data set without keeping any samples out (includes both ST and
SV above). As expected with similar samples and internal validation,
errors on elemental predictions are excellent. Interestingly, they are
comparable to the best RMSEP predictions in the rest of the table,
suggesting that a global training set actually does a fairly good job
even when the rock type or composition of the samples being ana-
lyzed is completely unconstrained.

The ability of a model to make accurate predictions of elemental
composition is a function of many variables, especially the character-
istics of the training set used in the predictions. The spread of abun-
dances of each element in the training set vs. the true composition
of the unknowns is one of those values. For example, standard devia-
tions on Al2O3 in the century set, phyllosilicates, and sediments are
3.43, 12.28, and 3.36 wt.%, respectively while the corresponding
RMSEP values for sedimentary rock predictions using each of those
rock types are 0.71, 1.78, and 0.62 respectively, suggesting that the
higher standard deviation among the Al2O3 abundances in the phyllo-
silicates, when used as a training set, led to a higher RMSEP, that is, a
less accurate prediction. However, the same logic does not apply to
SiO2 predictions, which are 1σ=9.69, 9.41, and 11.53 but have vari-
able RMSEP values of 3.26, 4.02, and 2.18. This point is shown graph-
ically in Fig. 8, which plots the standard deviations of all XRF
elemental abundances in each of the data sets used here (century
set, sediments, and phyllosilicates) on the x axis vs. the RMSEP

Fig. 6. Internal validation plot based on 100 igneous samples showing the futility of
using high numbers of components in predictive models. In most cases, the minimum
occurs within the first 15 components; in a few others, the number of components as-
ymptotically approaches a minimum at high numbers of components, systematically
over-fitting the data as it does so.

Table 3
Peaks used for wavelength calibration.

UV spectrometer Blue spectrometer VNIR spectrometer

NIST
wavelength

Element NIST
wavelength

Element NIST
wavelength

Element

234.350 Fe 383.829 Mg 505.598 Si
238.204 Fe 385.602 Si 516.732 Mg
239.563 Fe 386.260 Si 518.360 Mg
239.924 Fe 390.056 Ti 534.947 Ca
240.489 Fe 390.552 Si 553.548 Ba
241.052 Fe 391.345 Ti 588.995 Na
243.515 Si 393.366 Ca 610.272 Ca
248.327 Fe 394.401 Al 612.222 Ca
250.690 Si 394.867 Ti 614.171 Ba
251.920 Si 396.152 Al 616.217 Ca
258.588 Fe 396.847 Ca 634.710 Si
260.709 Fe 398.176 Ti 637.136 Si
261.762 Fe 398.976 Ti 643.900 Ca
262.567 Fe 399.864 Ti 646.257 Ca
271.441 Fe 404.581 Fe 670.779 Li
271.903 Fe 406.359 Fe 714.815 Ca
272.754 Fe 422.673 Ca 720.219 Ca
273.955 Fe 427.176 Fe 720.943 Ti
274.320 Fe 428.301 Ca 732.615 Ca
276.181 Fe 430.253 Ca 766.490 K
279.078 Mg 430.591 Ti 769.897 K
279.553 Mg 430.774 Ca 787.705 Mg
280.271 Mg 431.865 Ca 789.637 Mg
285.213 Mg 432.576 Fe 818.326 Na
288.158 Si 438.355 Fe 819.482 Na
292.863 Mg 440.475 Fe 849.802 Ca
293.651 Mg 455.403 Ba 854.209 Ca
298.765 Si 459.618 O 866.214 Ca
308.215 Al 460.733 Sr 891.207 Ca
309.271 Al 461.727 Ti 892.736 Ca
315.887 Ca 462.310 Ti
317.933 Ca 462.934 Ti
319.091 Ti 464.181 O
320.256 Ti 464.914 O
321.707 Ti 466.306 Al
322.284 Ti 468.191 Ti
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error on prediction of that element in the sedimentary rocks on the y
axis. For some elements, a small spread of composition (i.e., as repre-
sented by 1σ) in any given element results in a smaller error on the
prediction to a first order, but this is not a universal conclusion. This

suggests that the distribution of values within each training set is
varying (i.e., 1σ is an imperfect representation of the diversity in
that element) and/or that some underlying physical process is not
being accounted for in our analysis.

Table 5
RMSEP values for PLS-1 vs. PLS-2 resulting from use of numbers of components in Table 4.

Internal validation, PLS-1 Internal validation, PLS-2 External validation, PLS-1 External validation, PLS-2 Sum

Phy Cset C+P Seds Phy Cset C+P Phy Cset Ct+P Phy Cset C+P PLS-1 PLS-2

Global minimum
SiO2 10.31 5.96 7.74 4.57 7.04 10.61 4.12 5.61 3.92 4.57 7.27 8.82 37.66 42.89
Al2O3 2.80 3.98 1.76 4.42 2.19 0.91 3.05 2.04 0.57 2.37 0.76 1.33 14.19 11.98
TiO2 0.54 0.31 1.23 0.94 0.45 0.88 0.41 0.40 0.47 0.82 0.45 0.39 3.37 3.94
Fe2O3T 5.30 1.33 3.14 5.21 3.76 5.32 5.45 1.33 1.48 1.95 1.43 4.13 18.04 21.80
MgO 1.92 3.92 1.80 2.79 1.70 1.06 1.09 1.69 1.00 2.39 1.69 1.06 11.41 10.70
MnO 0.12 0.09 0.10 0.20 0.14 0.14 0.12 0.09 0.07 0.11 0.09 0.07 0.59 0.74
CaO 4.49 1.95 0.75 2.64 0.80 0.83 1.68 0.82 0.64 0.64 0.80 0.72 10.33 6.42
K2O 0.81 0.43 1.91 1.04 0.63 1.22 0.85 0.34 0.46 0.99 0.53 1.45 4.79 5.87
Na2O 1.17 0.50 0.71 0.84 0.67 2.77 1.48 0.54 0.71 4.55 0.67 0.72 5.10 10.23
P2O5 0.35 0.22 0.35 0.18 0.12 0.32 0.43 0.16 0.10 0.09 0.22 0.10 1.62 1.02
Sum* 27.80 18.70 19.49 22.84 17.50 24.05 18.67 13.03 9.41 18.48 13.91 18.80 107.11 115.59

First local minimum after intercept and first component
SiO2 4.65 6.99 2.21 2.18† 4.65 6.92 2.02 4.02 3.26 1.88 4.57 3.26 2.02 23.01 23.45
Al2O3 10.65 3.98 6.64 0.62 8.98 2.41 2.64 1.78 0.71 0.57 0.53 0.76 0.72 24.33 16.04
TiO2 0.72 2.45 1.62 0.23 0.72 0.35 0.85 0.41 0.25 0.37 0.44 0.28 0.29 5.84 2.94
Fe2O3T 5.30 5.02 4.26 1.02 5.21 1.56 2.69 2.36 1.33 1.21 1.95 1.07 1.42 19.47 13.91
MgO 0.87 10.11 2.33 0.74 0.90 4.14 1.67 0.87 0.94 1.00 0.90 1.42 1.06 16.12 10.10
MnO 0.12 0.12 0.19 0.04 0.25 0.08 0.09 0.11 0.07 0.07 0.11 0.07 0.07 0.69 0.66
CaO 2.77 1.06 0.84 0.43 2.31 2.42 2.25 0.48 0.82 0.64 0.64 0.80 0.72 6.60 9.15
K2O 2.49 0.43 1.91 0.37 1.25 0.89 0.56 0.55 0.34 0.46 0.40 0.32 0.44 6.18 3.87
Na2O 4.54 2.95 0.71 0.72 4.60 0.67 0.72 1.07 0.54 0.71 0.84 0.53 0.72 10.52 8.08
P2O5 0.11 0.24 0.35 0.02 0.11 0.41 0.16 0.09 0.07 0.06 0.09 0.06 0.03 0.91 0.85
Sum* 32.23 33.35 21.07 6.37 28.98 19.84 13.68 11.74 8.33 6.96 10.47 8.57 7.50 113.67 89.04

*The sum of RMSEP values is calculated for each model to provide an arbitrary means of comparing different models, though it has no statistical use.
†These data are 1st local minima from a separate calculation, and are not from Table 4.

Table 4
Number of components selected for all models based on Figs. 3–5.

SiO2 Al2O3 TiO2 Fe2O3T MgO MnO CaO K2O Na2O P2O5

Global minimum
Internal validation

Phyllosilicates PLS-1 1 13 1 4 15 7 8 6 2 1
Century set PLS-1 11 11 15 16 15 16 14 12 15 16
Both sets PLS-1 11 15 12 16 10 16 11 12 7 9
Phyllosilicates PLS-2 1 15 1 4 16 13 13 14 2 1
Century set PLS-2 15 14 15 14 15 15 14 16 7 16
Both sets PLS-2 13 16 16 16 12 16 16 16 9 16

External validation
Phyllosilicates PLS-1 5 1 5 2 14 1 13 7 11 2
Century set PLS-1 1 2 9 6 7 1 3 7 7 2
Both sets PLS-1 12 3 2 11 3 6 4 6 7 2
Phyllosilicates PLS-2 4 2 9 7 16 3 9 10 14 3
Century set PLS-2 1 3 2 10 12 1 5 10 12 2
Both sets PLS-2 13 6 2 2 4 7 5 14 9 2

1st local minimum
Internal validation

Phyllosilicates PLS-1 8 4 7 4 9 7 4 3 10 6
Century set PLS-1 8 11 8 6 11 6 9 12 9 12
Both sets PLS-1 6 9 9 8 8 10 5 12 7 9
Phyllosilicates PLS-2 4 4 4 4 5 6 7 5 14 7
Century set PLS-2 6 5 5 5 4 4 5 6 7 9
Both sets PLS-2 5 5 4 6 4 4 6 8 3 7

External validation
Phyllosilicates PLS-1 3 5 5 6 4 7 7 4 7 9
Century set PLS-1 6 4 4 6 4 6 3 7 7 4
Both sets PLS-1 7 3 6 7 3 6 4 6 7 4
Phyllosilicates PLS-2 4 6 6 7 6 3 9 4 5 3
Century set PLS-2 3 3 5 7 5 3 5 3 8 4
Both sets PLS-2 7 3 7 5 4 7 5 6 9 5
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10. Geochemical prognosis

Within these errors, we can finally address the question of how
useful LIBS results would be for interpretation of sedimentary rock
types. On Mars as on Earth, source rock type, weathering, transport,
sorting, redox changes, and diagenesis are all represented in the
chemistry of sedimentary rocks. Provenance information can be
obtained from sedimentary rocks only if modification by secondary
processes is minor. For example, Retallack (2001) suggests there are
four competing kinds of chemical reactions in paleosols that provide
information about the extent of chemical weathering; those that in-
volve major elements analyzed here include increases in:

1. Hydrolysis: Al2O3/(CaO+MgO+K2O+Na2O) and Al2O3/SiO2

2. Oxidation: (Fe2O3+FeO)/Al2O3 and (Fe2O3+FeO+MnO)/Al2O3

3. Hydration: SiO2/(Fe2O3+Al2O3), and
4. Salinization: (K2O+Na2O)/(Al2O3), Na2O/K2O, and Na2O/Al2O3.

These possibilities cover common types of chemical alteration that
the rocks might have experienced during weathering. As summarized

by Retallack (2001), hydrolysis involves the reaction of a mineral
grain with carbonic acid in a process that removes exchangeable cat-
ions such as Ca2+, Mg2+, K1+, and Na1+. The oxidation reactions in-
volve electron loss, generally from a Fe cation. Hydration (or
dehydration) involves the addition or loss of water that is structurally
part of a mineral, and salinization describes the extent to which min-
erals disappear from the rocks by dissolving into solution.

In this paper, we wish to know if the prediction errors (expressed
as RMSEP in Table 5) on these elements are small enough to allow
these ratios to be used to understand the chemical weathering pro-
cesses in a martian regolith. This question is addressed in the plots
shown in Fig. 9, in which oxide units have been converted to atoms
following the procedure in Retallack (2001). If a rock on Mars was
to be analyzed with LIBS using the current RMSEP values as error
bars, it is likely that some useful information would result. For exam-
ple, the hydrolysis plot shows that the silty clay is quite similar to its
parent red paleosol, and has not undergone much hydrolysis. The
waxy clay, however, has relatively high Si and low Al, indicating
loss of Al.

The other plots in Fig. 9 lead to similar conclusions. Most of the
samples studied here have Fe/Al ratios of ~0.30, corresponding to
fairly reducing environments. The hydration plot suggests an in-
crease in Si (relative to Al and Fe) with chemical weathering, with
few hydrated minerals. The salinization plots show a nearly constant
of Na/Al ratio and some slight variations in Na/K, with the latter
having ratios much less than the value of Na/K=1 that would
imply chemical weathering via salinization (mainly Na-zeolite
precipitation).

In all of these plots, the distance between the data points is at least
slightly greater than the size of the error bars. So some idea of the de-
gree of hydrolysis, oxidation, hydration, and salinization would be
obtained from the LIBS analyses, though it could not be considered
as robust evidence of one mechanism over another without further
data. Note also that the spectra used here were acquired at a 9 m
standoff distance, essentially equivalent to near the outer limit to
ChemCam's range. Signal to noise ratios are a strong function of dis-
tance (d), nearly 1/d3, so that even a small decrease in the distance
will bring rapid improvements.

Moreover, major elements used in combination with minor ele-
ments may be even more useful in predicting provenance, following
discriminant plots by such workers as Bhatia and Crook (1986),
Roser and Korsch (1988) and Floyd and Leveridge (1987). Develop-
ment of procedures to optimize trace and minor element analyses
of LIBS data are critically important for planetary exploration
(Wiens et al., 2002). Minor and trace element analyses present special
challenges to PLS because of the well-known correlations between
major and minor elements in geological samples that result from
chemical “camouflage.” PLS does not depend on knowledge of

Fig. 8. The 1σ standard deviations of all XRF elemental abundances in each of the data
sets used here (century set, sediments, and phyllosilicates) are plotted on the x axis vs.
the RMSEP error on prediction of that element in the sedimentary rocks on the y axis
using a log scale. Elements with a wide range (large 1σ) are not well-predicted, prob-
ably because the training set is more dissimilar to the samples being predicted. Ele-
ments for which the training set has only a small range that is also similar to that of
the unknowns do a better job in many cases. SiO2 is an important exception to this
rule, suggesting that the distribution of values in the training sets must be fundamen-
tally different from all the unknowns, and/or that some other underlying fundamental
process is not accounted for.

Fig. 7. Comparison of summed RMSEP values for all types of validation and combinations of different samples in the training sets for PLS-1 and PLS-2 models (data from right-most
two columns in Table 4). SiO2 is not shown for global minimum because it lies far outside the region plotted. A dashed 1:1 line indicating where the two models would produce
identical results is shown diagonally in each plot. Neither PLS-1 nor PLS-2 is a clear favorite for producing low prediction errors.
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which element produces a signal, so long as any given line correlates
with an elemental abundance, and the highest regression coefficients.
For example, because Rb readily assumes the crystallographic role of
K via a simple substitution, PLS predictions of Rb may make use of K
lines. Work by Tucker et al. (2009) shows that for many trace ele-
ments, useful lines corresponding to emission from minor elements
do exist and may be used for qualitative identifications and for abun-
dances calibrated using univariate analyses. Preliminary work by
Speicher et al. (2011) also shows that some minor elements are pre-
dicted very well by PLS-1, including Ba, Cr, Ni, Rb, and Sr.

11. Implications for remote LIBS

For remote LIBS instruments such as ChemCam, this study also has
broader implications. The ChemCam flight instrument was tested
under Mars conditions pre-flight; spectra were acquired from ~70
standards. However, PLS results of the current study make it clear
that successful quantitative predictions of elemental compositions
onMars might be improved by the use of a larger calibration set span-
ning a broad compositional range if the unknown samples on Mars
cover a broad compositional range.

This project shows that training set selection is complicated and is
dependent on the samples being studied. For our sedimentary sample
suite, the lowest prediction errors result from using a training set
with the broadest possible range of compositions but with external
validation of samples that are similar to the unknowns. This data set
thus yields results somewhat in contrast to those of Tucker et al.
(2010), who obtained the best results on the Cset samples (studied
herein) by using focused training sets bracketing the composition of
particular rock types within that data set with internal validation.

However, there are several important differences between Tucker et
al. (2010) and this study that reflect our evolving ability to perform
these analyses in increasingly sophisticated ways. Tucker et al.
(2010) utilized the Unscrambler® software package to automatically
pick the same number of regression components for all elements in
each regression, in contrast with the more customized procedures
(picking component numbers for each element based on internal
and external validation procedures) used herein. If the Tucker et al.
(2010) analyses had been done using the procedures in this paper,
the results might have been different. Moreover, Tucker et al.
(2010) reported precision in terms of 1σ errors, rather than using
RMSEP as in the current study. These parameters are related, but
not identical. The formula for standard deviation is

Standard deviation ¼ σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i yi−�yð Þ2

n−1

s
;

where yi is the residual (true-predicted value), �y is the average resid-
ual, and n is the number of samples. In Tucker et al. (2010), yi is the
residual (true-predicted value) for each sample and �y is again the av-
erage residual, i.e., the difference between each of the single measure-
ment residuals and the mean of all of them. When the average
residual ( �yi) is zero, then the equation for σ reduces to the same
equation as that for root mean square:

Root mean square ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i yið Þ2
n−1

s
:

The philosophical difference between these two parameters is that
σ is a measure of how tightly bound the residuals around the average

Fig. 9. Elemental ratio plots (converted to atoms as in Retallack, 2001) of the averages of samples in each rock type (from Table 2) with errors from the externally-validated PLS-1
model using the first local minimum as the number of components and the model built from the 100 igneous samples and the 17 phyllosilicates. These plots show trends associated
with different types of chemical weathering in paleosols, including hydrolysis, oxidation, hydration, and salinization, after Retallack (2001).
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residual, while RMSEP is a measure of how tightly bound the resid-
uals are around zero. Thus, RMSEP is a measure of accuracy and σ is
a measure of precision. If the average residual happens to be exactly
zero, then these two parameters are exactly equivalent. For all these
reasons, direct comparisons between the results of Tucker et al.
(2010) and the current study are inappropriate, though the macro-
scopic conclusions will remain the same.

However, all these results do underscore the importance of train-
ing set selection in producing optimal LIBS prediction errors for indi-
vidual elements, and suggest a need for an automated methodology
to choose specialized training sets for predictions of individual ele-
ments in individual unknowns. The subjective attempts presented
here and in Tucker et al. (2010) and Dyar et al. (2011a,b) show that
using geological reasoning to manually select training set samples
can only go so far in optimization of prediction errors. More rigorous
(less subjective) statistical procedures for training set selection are
needed. Unfortunately, PLS analysis is not designed to select specific
samples for training sets. PLS provides high-dimensional regression
capabilities and is thus useful for LIBS analysis in some applications,
but it provides no framework for taking advantage of structural sim-
ilarities in the data. Other high-dimensional regression techniques
that combine the ability to shrink the number of input variables
using projection with automatic selection of similar samples for pre-
dictions will be needed.

Ultimately, the best geological training set for predictions of
chemistry in samples of completely unknown composition will be
one that covers the broadest possible range of rock types and compo-
sitions. If the compositional space of the training set has no gaps, it
will always have rock types similar to the unknowns being probed.
From such a training set, samples that are similar to the unknown
can then be selected and used for optimal predictions.

For analyses of sedimentary rocks, this work demonstrates the po-
tential of LIBS for quantification of major elements at a significant dis-
tance from the sample. Improvements in the size and scope of
laboratory calibration data along with automation of training set se-
lection should ultimately reduce prediction errors on LIBS analyses,
making this a very attractive analytical technique not only for Mars
for terrestrial field instrumentation. Portable backpack LIBS units
have been tested for a wide variety of applications (e.g. Cunat et al.,
2005; Harmon et al., 2005; Barefield et al., 2010), and these units
have the potential to obtain high quality in-situ analyses of geological
materials. This study demonstrates that LIBS can discern and quantify
the four competing kinds of chemical reactions in paleosols (hydroly-
sis, oxidation, hydration, and salinization) that provide information
about the extent of chemical weathering. Results of this study show
that the LIBS technique has a promising future for characterizing
both chemical/biochemical and siliciclastic sedimentary rocks and
understanding their evolution.
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Appendix A. Evaluation of data pre-processing steps

To confirm that data pre-processing was performed in the most
optimal fashion possible, the order and need for three different
steps were tested.

a. Wavelength calibration and registration. Because of non-linearity
in the detectors' pixel to wavelength relationship, data output
from the spectrometers does not have a consistent increment in

wavelength. To correct for this, a set of intense, isolated peaks
that could be clearly assigned to specific elements with known
peak energies was identified in each of the three wavelength re-
gions (Table 3). Comparison of the known peak positions with
their pixel index in the experimental data enabled derivation of
a 2nd-order polynomial calibration function for each of the three
wavelength regions. To allow for comparison between multiple
data sets that use slightly different calibration functions, we inter-
polated the spectral data to a standard wavelength axis with con-
sistent intervals. The interpolation also involved smoothing, for
which we chose smoothing parameters as benign as possible so
as not to either lose data or introduce noise.

b. Background removal. Treating each of the three wavelength re-
gions separately, the R package Peaks (Morháč, 2008, 2009) was
used to fit and remove the baseline (mostly Bremsstrahlung)
from the spectrum of each spot (five spots per sample). This step
was undertaken because we tested results before and after remov-
ing the baseline and found that better predictions result from an-
alyses done after baseline subtraction, unlike what was found with
the analyses of Tucker et al. (2010). The order of these steps was
determined through testing of various permutations to under-
stand which sequent would produce the lowest possible errors
on the eventual predictions of chemical compositions (Fig. A1).
The procedure of normalizing the data to total intensity before
analysis was also tested, and it was found to be unnecessary to
achieve desirable predictions for these major element data. This
result differs from those reported in Tucker et al. (2010) because
that paper did not test all these permutations together in varying
sequences.

c. Averaging of the five spots into one spectrum for each sample. All
samples in this study, both those in the prospective training sets
and the sedimentary samples themselves, have previously been
analyzed by XRF as noted above as bulk samples. For this reason,
we averaged the five spectra from five spots on each sample,
yielding one spectrum for each sample.

Fig. A1. Comparisons of varying steps in LIBS data pre-processing sequence using an 11
component model. The steps include registration of wavelength (λ Registr) correct for
non-linearity in the detectors, normalization (Norm) to scale all variables as described
in Tucker et al. (2010), baseline fitting and removal (BFR), and averaging of the five
spots on each sample (Avg). Of these, the sequence that consistently gives the lowest
RMSEP values is wavelength registration followed by baseline fitting and removal fol-
lowed by averaging of five spectra. Normalization of compositional data does not ap-
pear to be a necessary step.
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