Downloaded from www.sciencemag.org on November 3, 2011 ### **TECHNICAL** COMMENT # Comment on "Atmospheric P_{CO_2} Perturbations Associated with the Central Atlantic Magmatic Province" Michael R. Rampino^{1,2}* and Ken Caldeira³ Schaller *et al.* (Research Article, 18 March 2011, p. 1404) proposed that carbon dioxide (CO_2) released by the Central Atlantic Magmatic Province eruptions over periods of about 20,000 years led to substantial increases of up to 2000 parts per million (ppm) in the concentration of atmospheric carbon dioxide (Pco_2) near the Triassic-Jurassic boundary. Use of an atmosphere-ocean model coupled to a carbon-cycle model predicts Pco_2 increases of less than 400 ppm from magmatic volatiles, with only a small climatic impact. challer *et al.* (*I*) proposed that large amounts of CO_2 released by the Central Atlantic Magmatic Province (CAMP) ($2.6 \times 10^6 \text{ km}^3$ of magma) eruptions contributed to substantial increases in atmospheric CO_2 near the Triassic-Jurassic boundary. With an estimated volcanic efflux of 1.4×10^{10} kg of CO_2 per km³ of basaltic magma (*2*), the total CO_2 release for the CAMP basalts is about 3.4×10^{16} kg of CO_2 . There are three lava flow events in the Newark and Hartford Basins (*I*), so that each of the three lava ${\rm CO_2}$. Schaller *et al.* (1) estimate that the release of this much ${\rm CO_2}$ over a period of ~20 thousand years (ky) (the resolution of orbital precession) would directly increase atmospheric partial pressure of ${\rm CO_2}$ ($P{\rm Co_2}$) by ~1400 parts per million (ppm) from a base of about 2000 ppm (using a conversion factor of 7.82×10^{12} kg of ${\rm CO_2}$ per ppm ${\rm CO_2}$). This is less than a doubling of $P{\rm co_2}$ and hence a global climatic warming estimated as less than ~3°C (3). flows could represent an erupted volume about 0.8×10^6 km of magma releasing 1.1×10^{16} kg An eruption rate producing $0.8 \times 10^6 \text{ km}^3$ of basaltic magma in only 20 ky would be much greater than the commonly inferred 10^5 - to 10^6 -year duration for flood basalt volcanism (4, 5). However, if one scales up from the eruption of Laki in 1783, which produced 12 km^3 of basaltic lava over about 2 months (2) at a rate of $4 \times 10^6 \text{ km}^3$ are three lava flow events in the Newark and Hartford Basins (*I*), so that each of the three lava ¹Department of Biology and Environmental Studies Program, New York University, 100 Washington Square East, New York NY 10003, USA. ²NASA, Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA. ³Department of Global Ecology, Carnegie Institution, 260 Panama Street, *To whom correspondence should be addressed. E-mail: mrr1@nyu.edu Stanford. CA 24305, USA. **Fig. 1.** Increase in atmospheric Pco_2 caused by magmatic volatiles from CAMP eruption of 10^{16} kg of CO_2 added to the atmosphere instantaneously (blue line) and over 20 ky (red line). $10^3 \, \text{m}^3 \, \text{s}^{-1}$ (or $1.1 \times 10^7 \, \text{kg s}^{-1}$), then it would be possible to produce $\sim 10^6 \, \text{km}^3$ of lava in about 20 ky of semicontinuous eruption. The time over which the magma is erupted affects the amount of CO2 that stays in the atmosphere. We used an ocean-atmosphere box model coupled to a carbon-cycle model (6, 7)to simulate increases in Pco2 resulting from the CAMP eruptions for two cases: an unrealistic instantaneous release, and release over a period of 20 ky (Fig. 1). Instantaneous release of 10¹⁶ kg of CO₂ results in an increase of PcO₂ of about 1300 ppm over a high early Jurassic background of about 2000 ppm, similar to results of Schaller et al. (1). If the release is accomplished over a substantial time period, then one must take into account uptake of CO2 by the oceans, and if long enough, interactions with the solid earth through rock weathering. When released over 20 ky, the increase results in a peak Pco₂ value of only about 400 ppm over early Jurassic background (Fig. 1). Thus, magmatic CO₂ release alone, even for eruptions producing a million cubic kilometers in periods as short as 20 ky, is probably not sufficient to cause major climatic changes and mass extinction (Fig. 1). Schaller et al. (1) estimated $P\cos_2$ up to 4000 to 5000 ppm after CAMP eruptions based on pedogenic carbonates. Palaeobotanical evidence suggests that $P\cos_2$ may have increased by a factor of four across the Triassic-Jurassic boundary (8), and palynological studies have been interpreted as indicating an atmospheric $P\cos_2$ at least 10 times present levels, with temperatures rising by about 10° C (9). If these estimates are correct, then an additional source of CO_2 from interactions between CAMP magma and country rock (10) or release of marine hydrate deposits (11) seems to be required to explain the evidence for very high early Jurassic $P\cos_2$ at the time of the CAMP eruptions. #### References - M. F. Schaller, J. D. Wright, D. V. Kent, Science 331, 1404 (2011). - 2. S. Self, M. Widdowson, T. Thordarson, A. E. Jay, *Earth Planet. Sci. Lett.* **248**, 518 (2006). - Intergovernmental Panel on Climate Change, Climate Change 1995, J. T. Houghton, et al., Eds. (Cambridge Univ. Press, Cambridge, 1996). - 4. C. Dessert et al., Earth Planet. Sci. Lett. 188, 459 (2001). - 5. V. Courtillot *et al.*, Earth Planet, Sci. Lett. **80**, 361 (1986). - K. Caldeira, M. R. Rampino, Geophys. Res. Lett. 17, 1299 (1990) - K. Caldeira, M. R. Rampino, Geophys. Res. Lett. 18, 987 (1991). - 8. J. C. McElwain, D. J. Beerling, F. I. Woodward, *Science* **285**, 1386 (1999). - 9. B. van de Schootbrugge et al., Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 126 (2007). - 10. H. Svensen et al., Nature 429, 542 (2004). - G. R. Dickens, J. R. O'Neil, D. K. Rea, R. M. Owen, Paleoceanography 10, 965 (1995). 20 May 2011; accepted 5 October 2011 10.1126/science.1208653 ### **TECHNICAL** COMMENT ## Response to Comment on "Atmospheric Pco₂ Perturbations Associated with the Central Atlantic Magmatic Province" Morgan F. Schaller, 1* James D. Wright, 1 Dennis V. Kent 1,2 Rampino and Caldeira argue that the first pulse of the Central Atlantic Magmatic Province would increase the concentration of atmospheric carbon dioxide (Pco_2) by only 400 parts per million if erupted over 20,000 years, whereas we observed a doubling within this interval. In the absence of any data to the contrary, we suggest that a more rapid (\leq 1000-year) eruption is sufficient to explain this observation without relying on thermogenic degassing. ur observations from the Newark Basin indicate that the first pulse of the Triassic-Jurassic Central Atlantic Magmatic Province (CAMP), represented by the Orange Mountain Basalt, was emplaced within a precession cycle and resulted in a doubling of the atmospheric partial pressure of CO_2 (Pco_2) above pre-eruptive background levels. A simple model with instantaneous degassing [<1 thousand years (ky), within the time scale of ocean overturning] of 2.5×10^{17} moles of CO_2 (~1.2 × 10^{16} kg), roughly the efflux potential of the first volcanic pulse, gives a ~1400 parts per million (ppm) increase in Pco₂ above the ~2000-ppm background level (1). This estimate is compatible with and (admittedly, barely) within the error of the doubling from \sim 2000 to 4400 \pm 1200 ppm observed in the Newark Basin. Rampino and Caldeira (2) present a model whereby a 20-ky release of the same magnitude produces only a ~400-ppm atmospheric Pco2 increase, which they take as an indication that an additional source of CO₂ is necessary to explain the observed Pco2 increase. We do not dispute this point, but it begs qualification. The cycle stratigraphic record from the Newark Basin provides a constraint on the maximum duration (<20 ky) of the first pulse of magmatism, but we are not aware of any data (e.g., weathering at the tops of individual lava flows or accumulation of sediments between flows) that preclude a much more rapid release. Therefore, these release-time constraints provide two useful end-member scenarios to explain the observed changes in Pco₂: Either the CO₂ release was rapid and could be almost exclusively volcanogenic, or it was more protracted, which would require nearly 10 times as much CO₂ [e.g., see (3, 4)] $[10^{17}$ moles atmospheric reservoir versus 10^{18} moles atmosphere-ocean reservoir (5–8)], opening the possibility that it may be thermogenic in origin. Because thermogenic evolution of CO₂ from CaCO₃ sediments is an unlikely source [e.g., see (9)], the next largest reactive carbon pool in Earth's crust is organic, which implies that the extra CO2 needed for a protracted release would be relatively depleted in ¹³C. However, the organic carbon δ^{13} C measurements from the Newark Basin (1) do not indicate a substantially larger ¹³C-depleted component in the overall atmospheric Pco₂ increase, although there is a slight δ^{13} C decrease (~0.5 per mil) above each volcanic unit. We note that some marine sections record a potential light carbon-isotope excursion at about this time (10); however, the exact relationship of the marine δ^{13} C decrease to the CAMP eruptions remains unclear (e.g., see 11). Moreover, our observation of comparable Pco₂ and δ ¹³C changes after the second and third volcanic events would require a similar thermogenic input if the duration of each pulse was $\sim\!20$ ky, which would represent a substantial repeated flux of thermogenic ${\rm CO_2}$ to the atmosphere at discrete intervals. Therefore, we are left to speculate on the precise source of the CO_2 pulse recorded in the Newark Basin, which is essentially an argument of release duration versus size. In the absence of any data to the contrary, we favor a rapid release that allows the majority of each perturbation to be volcanogenic but that does not preclude a metamorphic carbon source. The doubling of Pco_2 observed after each volcanic unit in the Newark Basin is broadly consistent with other lower-resolution studies that indicate a tripling to quadrupling through the interval (12-14). The continued challenge to the modeling community is to devise a scenario that conforms to these observations. #### **References and Notes** - M. F. Schaller, J. D. Wright, D. V. Kent, Science 331, 1404 (2011) - M. R. Rampino, K. Caldeira, Science 334, 594 (2011); www.sciencemag.org/cgi/content/full/334/6056/ 594-h - 3. D. J. Beerling, R. A. Berner, *Global Biogeochem. Cycles* **16**, 1036 (2002). - 4. R. A. Berner, D. J. Beerling, *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **244**, 368 (2007). - 5. R. A. Berner, K. Caldeira, Geology 25, 955 (1997). - K. Caldeira, G. H. Rau, Geophys. Res. Lett. 27, 225 (2000). - R. A. Berner, A. C. Lasaga, R. M. Garrels, Am. J. Sci. 283, 641 (1983). - 8. K. E. Trenberth, *J. Geophys. Res.* **86**, (C6), 5238 (1981). - D. M. Kerrick, J. A. D. Connolly, *Nature* 411, 293 (2001). - S. P. Hesselbo, S. A. Robinson, F. Surlyk, S. Piasecki, *Geology* 30, 251 (2002). - J. H. Whiteside, P. E. Olsen, T. Eglinton, M. E. Brookfield, R. N. Sambrotto, *Proc. Natl. Acad. Sci. U.S.A.* 107, 6721 (2010) - J. C. McElwain, D. J. Beerling, F. I. Woodward, Science 285, 1386 (1999). - 13. D. Beerling, *Nature* **415**, 386, author reply 388 (2002). - M. Steinthorsdottir, A. J. Jeram, J. C. McElwain, Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 418 (2011). Acknowledgments: This work was supported by National Science Foundation grant 0958867. This is Lamont-Doherty Earth Observatory Contribution 7497. 24 June 2011; accepted 6 October 2011 10.1126/science.1209422 ¹Earth and Planetary Sciences, Rutgers University, 610 Taylor Road Piscataway, NJ 08854, USA. ²Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA. ^{*}To whom correspondence should be addressed. E-mail: schaller@rci.rutgers.edu