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The North Tanzanian Divergence zone (NTD), at the southern end of the eastern branch of the East African
Rift, is part of one of Earth's few currently active intra-continental rift systems. The NTD preserves a complex
tectono-magmatic evolution of a rift in its early stage of activity. The oldest magmatism reported in the NTD
is associated with the centrally located Essimingor volcano. Although major element oxides show narrow
compositional variations suggesting fractional crystallization, trace element abundances and Sr–Nd–Pb iso-
topic data have complex distributions that require open-system processes. The more primitive samples
(MgO>9 wt.%) likely reflect partial melting of a metasomatized lithospheric mantle characterized by residual
garnet, phlogopite and minor amphibole. The range of radiogenic Pb isotopic compositions indicates the
presence of mixing between this source and the lithosphere of the western branch of the East African Rift
(Toro Ankole and Virunga). Laser-incremental heating of selected samples gives 40Ar/39Ar ages that range
from 5.76±0.02 Ma to 5.91±0.01 Ma, suggesting an age roughly 2 myr younger than previously reported.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The East African Rift (EAR) is an intracontinental rift system char-
acterized by a succession of extensional basins linked and segmented
by accommodation zones (Chrorowicz, 2005). Volcanism in the EAR
is considered to be a result of one or more mantle plumes from
undetermined depths of origin rising to the base of the lithosphere
(e.g. Ebinger and Sleep, 1998; George et al., 1998; Lin et al., 2005;
Nyblade et al., 2000; Owens et al., 2000; Smith, 1994). Along the
length of the EAR, numerous volcanoes with highly variable volumes
and compositions have erupted both prior to and in conjunction
with the onset of documented extension at ~30 Ma (Baker et al.,
1996; Hofmann et al., 1997). The age, duration and geochemical evo-
lution of these volcanoes serve as primary bases for unraveling the
tectonomagmatic development and history of the EAR.

In northern Tanzania,magmatic activity and rifting are superimposed
upon a pre-existing zone of crustal weakness: the tectonic contact
between the Archean Tanzanian Craton to the west and the Proterozoic
Mozambique Mobile Belt to the east (Smith, 1994; Fig. 1). Baker et al.
(1972) referred to this region as the North Tanzanian Divergence zone
s, Rutgers University, 610 Taylor
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gence zone (East African Rift
(NTD). The earliest occurrence of volcanism in the NTD appears to be
Late Miocene or Early Pliocene, thus much younger than in the northern
part of the EAR. The NTD is characterized by an abrupt widening of the
rift at around 3°Swhere it extends from the Plio-Quaternary Kilimanjaro
volcano in the east to the large Late Pleistocene caldera of Ngorongoro in
the west (Fig. 1). This 200 km wide zone contrasts markedly with the
50–60 kmwidth of the majority of the East African Rift, and is compara-
ble to the width observed in Turkana, northern Kenya. From north
to south, the NTD volcanoes (Fig. 1) include the poorly studied Gelai
near the Kenya–Tanzania border, and the nearby well-known Oldoinyo
Lengai, Earth's only active carbonatite volcano; southward, the Late
Miocene Essimingor volcano is considered the oldest pre-rift volcano of
the NTD based on a K–Ar age of around 8 Ma from Bagdasaryan et al.
(1973). The present day north–south rift valley in the NTD is thought
to have been established about 1.2 Ma (MacIntyre et al., 1974) and
the older volcanoes to have erupted in a pre-rift tectonic depression
(Dawson, 1992).

The detailed geochemical, spatial and temporal evolution of the
NTD remains unclear, due to a lack of sampling, geochemical and geo-
chronological data (see summaries in Dawson, 2008 and Le Gall et al.,
2008). The age data are highly variable in quality and many are isolated
K–Ar dates. To address these uncertainties and to better unravel the
tectonomagmatic history of the NTD, we have initiated a systematic pro-
gram focused on providing detailed geochemical and geochronological
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Fig. 1. (a) Map of the southern sector of the East African Rift showing major regional faults, including the boundary between the Archean Tanzanian Craton and the Proterozoic
Mozambique Belt and location of the North Tanzanian Divergence (Chrorowicz, 2005; Nyblade et al., 2000). The black star represents the location of the crustal contaminant
used in the discussion (TA-47, Manya et al., 2007). (b) Map of the North Tanzanian Divergence sector of the East African Rift. The shaded area represents the Neogene to Recent
volcanism as in Dawson (1992). (c) Essimingor volcano and the location of the samples selected in this study (inclusive of Paslick et al., 1995 location: BD214 (3°23′6″S, 36°2′
15″E), BD216 (3°23′6″S, 36°2′36″E) and BD247 (3°24′30″S, 36°3′40.7″E) from Dawson personal communication).
Map modified from GeoMapApp and CNES/SPOT image 2010.
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data for key northern Tanzanian volcanoes (Mollel et al., 2008, 2009,
2011). Here, we report our findings on the centrally located Essimingor
volcano, which likely record the earliest volcanic activity in the NTD.

2. This study

We collected 40 well-located lava samples from the S–SW slopes of
Essimingor volcano (Fig. 1, Table 1). Samples are not evenly distributed
across the volcano because of access difficulties; nevertheless an
attempt was made to collect a variety of lithologies among the visible
range of lava types in the area. Unfortunately a geologic map of the
volcano is not available and due to the extensive vegetation we were
unable to produce a stratigraphic section of the samples collected. We
report here the results of 40Ar/39Ar dating, major and trace element
analyses, and Pb, Sr, and Nd isotope analyses for the Essimingor sam-
ples. In the laboratory, thin sections were made to determine pheno-
cryst assemblages and degree of weathering (summary available in
Appendix A). Twenty two samples were further prepared for geochem-
ical analyses, and 12 of these were dated by 40Ar/39Ar geochronology.

3. Background and methods

3.1. Geochronology

Evans et al. (1971) reported four K–Ar analyses (replicates on two
samples) of nephelinite collected from one location on the southeast
Please cite this article as: Mana, S., et al., Geochronology and geochemist
mantle beneath the North Tanzanian Divergence zone (East African Rift
slopes of Essimingor. The ages are 4.89±0.09 and 4.68±0.09 Ma for
one sample, and 3.23±0.07 and 3.20±0.06 Ma for the other. Based
on these data Evans et al. (1971) concluded that Essimingor was
active during the Pliocene, probably before 4.8 Ma. Bagdasaryan
et al. (1973) reported two additional K–Ar analyses from Essimingor
based on a single whole rock sample of melaphonolite lava. The
precise location on Essimingor from where this sample was collected
is not known. Duplicate K–Ar analyses of this sample yielded ages of
8.1±1 Ma and 7.35±0.65 Ma. These K–Ar dates are commonly
used to establish Essimingor as the oldest volcano of the NTD (e.g.
Dawson, 2008; Le Gall et al., 2008).

Whole rock, matrix, and when possible, nepheline separates were
analyzed using 40Ar/39Ar laser incremental-heating techniques for
twelve selected samples (Table 2). Samples were crushed, sieved
between 300 and 600 μm (50 and 30 mesh sizes), and washed with dis-
tilledwater in an ultrasonic bath, loaded intowells of Al irradiation disks,
wrapped in Al foil and sealed in a quartz–glass tube. The samples, along
withmultiple splits of themonitormineral, Fish Canyon Sanidine (FC2=
28.02±0.16 Ma; Renne et al., 1998), were irradiated in the central thim-
ble of the USGS TRIGA reactor in Denver for 20 min. The following
interference correlations were used: (36Ar/37Ar)Ca=2.64±0.02
(10−4), (39Ar/37Ar)Ca=6.73±0.04 (10−4), (38Ar/39Ar)K=1.34±
0.02 (10−2) (Dalrymple et al., 1981, 1993).40Ar/39Ar ages were de-
termined in the Rutgers' Earth and Planetary Sciences Noble Gas
Laboratory, following procedures similar to those described in Carr
et al. (2007).
ry of the Essimingor volcano: Melting of metasomatized lithospheric
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The 40Ar/39Ar results, summarized in Table 2, include integrated
total fusion age, plateau age and inverse isochron age of the plateau
steps. The plateau ages were calculated based on the following stan-
dard parameters: 2-sigma of error overlap, a minimum number
of three continuous steps indistinguishable at a 95% confidence
value, and being representative of a minimum value of 40% of the
total 39Ar* released. The inverse isochron ages are deduced by the
fit obtained from plotting the atmospheric related 36Ar/40Ar compo-
nent against the radiogenic 39Ar/40Ar (McDougall and Harrison,
1999). The ages that are considered more reliable are shown in bold
in Table 2.
3.2. Geochemistry

Few geochemical data for Essimingor have been published. Paslick
et al. (1995) reported major and trace elements and Sr–Nd–Pb isoto-
pic compositions for three samples described as foidite and basanite.
Dawson (2008) mentions the presence of melilites and nephelinites
from Essimingor as reported by Wood (1968) in an unpublished Ph.D.
thesis.

We report here major and trace element abundances for 22
samples and Pb, Sr, and Nd isotopic data for 15 of them (Tables 1
and 3). Samples were crushed in a steel jaw crusher and washed
with deionized water in an ultrasonic bath. Alteration-free rock
chips were selected using a stereoscopic microscope and powdered
using an alumina mill. At Michigan State University, the powders of
8 samples were fused into homogeneous glass disks using ~5 g of
sample plus lithium tetraborate (Li2B4O7). Analytical methods are
similar to those reported by Hannan et al. (2002). Glass disks were
analyzed by X-ray fluorescence (XRF) in a Bruker S4 Pioneer for
major elements and selected trace elements (e.g., Ni, Rb, Sr, Zr, Zn
and Cu). Trace elements were obtained subsequently on the same
glass disks by laser ablation inductively coupled plasma mass spec-
trometry (LA-ICP-MS) in a Micromass Platform ICP-MS with a Cetac
LSX 200+ Nd: YAG laser (266 nm). The other 16 samples were ana-
lyzed at Duke University. In this case, the powders were fused with
a Li meta-borate flux to obtain major elements by Direct Current
Plasma Optical Emission Spectrometer (DCP-OES) and acid digested
to analyze trace elements by Inductively Coupled Plasma Mass
Spectrometer (ICP-MS) (procedure details reported in Furman et al.,
2006b).

The Pb, Sr, and Nd isotope analyses were carried out through sam-
ple digestion and element chromatography performed at Rutgers in a
Class 1000 clean room, equipped with Class 100 laminar flow hoods
with downdraft exhaust, using a geochemical sample preparation
following procedures previously outlined in Gazel et al. (2009).
About 500 mg of whole rock powder of each sample was dissolved
in an open Teflon-beaker at ~150 °C, by successive steps of dissolu-
tion and acid digestion (HF, HNO3 concentrate, 7.3 N HCl and 0.5 N
HBr were used). Isotope separation and ratio determinations were
resolved using a GV Isoprobe-T multicollector thermal ionization
mass spectrometer (TIMS). Sr and Nd were measured in a dynamic
multicollection mode, whereas Pb was measured in a static
multicollection following the procedures outlined in Gazel et al.
(2009). Moreover, an alternative procedure to measure Pb isotopes
using a Fisons PLASMA 54 multi-collector magnetic sector double
focusing Inductively Coupled Mass Spectrometer (MC-MS-ICPMS)
has been adopted at Rutgers. A set of Pb analyses was performed
resulting in a high quality dataset (see detailed procedure in
Appendix B). The Pb isotopic data produced by TIMS were corrected
for mass fractionation following the Galer and Abouchami (1998)
parameters. An exponential correction based on the recent pub-
lished atomic masses by Berlund and Wieser (2011) have been
applied on the analyses obtained by MC-MS-ICPMS (see details in
Appendix B).
Please cite this article as: Mana, S., et al., Geochronology and geochemist
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4. Results

4.1. Geochronology

Laser-incremental heating 40Ar/39Ar analyses of whole rock,
matrix and nepheline separates of the Essimingor lavas yield plateau
ages that range from 5.76±0.01 to 5.91±0.01 Ma. Examples of
the 40Ar/39Ar data are shown in Fig. 2. Some measurements, not
considered in the final age range, show a progressive monotonic
decrease of apparent ages with increasing temperature, possibly
explained by a trapped argon component, 39Ar recoil and/or alteration
(e.g. ES10-2008 matrix, Fig. 2 bottom right). A few analyses were
of low radiogenic yield, with large accompanied uncertainties (e.g.
ESMT-6 whole rock, Fig. 2 bottom left) and likewise are not included
(see detailed selection criteria in Table 2). Many of the analyses were
highly radiogenic. In these cases, the inverse isochron plots, although
showing a well-behaved mixing line yield fairly large uncertainties
with the 40Ar/36Ar intercept, but small uncertainties in 39Ar/40Ar inter-
cept, and thus the age (Fig. 3a). In some samples, such as the nepheline
from ES17-2008, the inverse isochron plot (Fig. 3b) shows two compo-
nents, underlining the presence of a trapped or secondary Ar compo-
nent. The primary component shows an atmospheric composition
within error, 40Ar/36Ar intercept of 282±16. The secondary component
has a 40Ar/36Ar intercept at 4000±3000. The resultant age of the
primary component is still considerably older than the range of the
other samples. This can be due to an incomplete resolution of the two
components or a further contamination not clearly identified here. For
this reason samples presenting this behavior were not included in the
final age range. Nepheline separates from some of our dated samples
yield anomalously old integrated ages (K–Ar equivalent) and were
discarded as well (Table 2). Of the twelve samples dated, six provide
reliable ages and two of these (ESMT-2 and ES14-2008) are statistically
identical.

4.2. Geochemistry

A petrographic study of the Essimingor samples indicates that
the main phenocryst phase is clinopyroxene with variable amounts
of nepheline, titanomagnetite, apatite, perovskite, titanite and minor
feldspars and melilite. Sparse groundmass zeolite and calcite indicate
some degree of secondary alteration along with iddingsitized olivine
found in samples ESMT-6 and ESMT-7 (Appendix A).

The new geochemical data define a SiO2 undersaturated series
from picrite to tephrite to nephelinite to phonolite (Fig. 4) along
with a decrease in MgO content from 16.5 to 0.8 wt.% (Fig. 5). The
variation of MgO content with other oxides and trace elements
defines apparent crystal fractionation paths: Al2O3, Na2O and K2O
correlate negatively with MgO, while CaO correlates positively. The
three Essimingor samples from Paslick et al. (1995) are included in
Figs. 4, 5, and in isotopic discussions. The major element abundances
and isotopic ratios present no indication of interlaboratory bias. The
distribution of P2O5, TiO2, and V contents suggest an important role
for progressive fractionation of the accessory phases apatite and
titanomagnetite at MgO contents less than 8 wt.% (Fig. 5). Many
trace elements (Rb, Ba, Sr, Cs, Zr, Hf, Pb, Th) correlate negatively with
MgO indicating their incompatibility in the crystallizing assemblage
(e.g. Pb in Fig. 5). Other trace elements (e.g. Cr in Fig. 5) correlate
positively with MgO and are selectively compatible in key crystallizing
phases: Sc, Cr and Ni are compatible in olivine and clinopyroxene, Y
is compatible in apatite and perovskite, V is accepted by clinopyroxene
and titanomagnetite resulting in a change of slope consistent with the
fractionation of the latter, while apatite acts as a sink for REE (e.g. P2O5

and La in Fig. 5).
Ce/Pb values display a large range of variation, in the mafic samples

(59–22, Fig. 6b). Chondrite normalized REE plots show a preferential en-
richment of light REE relative to heavy REE, typical of alkaline magma
ry of the Essimingor volcano: Melting of metasomatized lithospheric
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Table 1
Major (wt.%) and ICP‐MS trace element (ppm) results.

Sample Lab Locality SiO2 TiO2 Al2O3 Fe2O3 FeO FeOT MgO MnO CaO Na2O K2O P2O5 V Cr Sc Ni Cs Rb Sr

ES‐16 d S 03° 28' 7.285" E 036° 0' 33.424" 39.9 3.2 6.8 2.32 11.85 14.03 16.5 0.2 13.8 2.6 2.4 0.50 249.3 694.5 26.9 411.5 0.34 51.8 825
ESMT‐6 m S 03° 26' 05.7" E 036° 07' 52.6" 43.78 3.74 8.13 2.12 10.78 13.28 9.84 0.21 17.18 1.72 1.43 0.70 352.33 459.6 – 107 – 32 1175
ESMT‐7 m S 03° 26' 05.6" E 036° 07' 20.0" 42.52 3.88 8.83 2.21 11.27 13.67 9.09 0.22 15.52 3.70 1.78 0.79 360.07 333.43 – 118 – 39 1046
ES‐34 d S 03° 26' 30.684" E 036° 1' 22.239" 37.8 6.1 8.7 2.47 12.58 15.10 7.9 0.3 17.8 2.3 2.0 2.09 511.6 31.5 22.7 57.2 0.48 47.7 1213
ES‐21 d S 03° 27' 49.4" E 036° 00' 52.1" 41.6 4.0 12.2 2.24 11.45 13.40 6.7 0.3 14.2 3.3 3.2 1.05 321.1 52.3 15.9 31.3 0.91 65.4 1919
ES‐27 d S 03° 28' 9.215" E 035° 59' 12.631" 40.6 5.3 11.4 2.27 11.57 13.73 6.4 0.2 14.7 4.2 2.0 1.47 432.6 32.7 18.4 41.3 0.73 50.7 1333
ES10‐2008 m S 03° 25' 42.3" E 036° 03' 08.6" 40.23 5.30 12.00 2.22 11.30 13.98 6.19 0.26 14.39 4.25 2.06 1.36 386.55 12.65 – 33 – 39 1326
ESMT‐5 m S 03° 26' 04.2" E 036° 07' 20.4" 43.79 3.75 13.70 2.05 10.44 12.91 5.46 0.25 11.35 5.41 2.18 1.20 285.31 52.58 – 25 – 101 1283
ESMT‐2 m S 03° 25' 27.7" E 036° 03' 03.3" 40.18 3.46 11.93 1.97 10.07 12.49 4.87 0.33 16.72 5.56 3.06 1.41 402.87 6.41 – – – 58 1595
ES17‐2008 m S 03° 26' 07.5" E 036° 07' 29.7" 47.06 3.17 15.64 1.72 8.79 10.77 3.39 0.21 8.69 6.52 3.73 0.83 216.2 6.9 – – – 75 1403
ES14‐2008 m S 03° 25' 41.1" E 036° 03' 16.0" 51.26 2.14 17.46 1.33 6.78 8.38 2.48 0.23 6.43 6.66 4.50 0.46 165.61 7.76 – – – 127 1927
ESMT‐4 m S 03° 25' 24.9" E 036° 03' 06.9" 51.69 1.81 17.97 1.21 6.16 7.52 1.80 0.22 5.62 8.10 4.90 0.37 143.71 3.69 – – – 93 1493
ES‐18 d S 03° 27' 54.0" E 036° 00' 33.1" 54.4 1.3 19.7 1.00 5.09 5.96 1.6 0.2 3.9 8.4 4.2 0.27 86.4 2.3 2.5 3.6 1.17 101.3 1705
ES‐6 d S 03° 28' 0.845" E 035° 59' 47.852" 55.2 1.3 19.6 1.00 5.08 5.97 1.5 0.2 3.8 8.2 3.9 0.29 82.2 3.3 3.1 3.8 1.36 81.6 1706
ES‐2 d S 03° 28' 20.047" E 035° 59' 41.7" 55.0 1.4 19.1 1.03 5.25 6.19 1.3 0.2 4.0 8.1 4.5 0.30 84.1 2.3 2.5 3.2 0.98 103.5 1865
ES‐13 d S 03° 28' 40.796" E 036° 0' 20.436" 54.1 1.5 18.5 1.08 5.53 6.54 1.3 0.2 4.6 8.5 4.3 0.36 100.7 2.2 3.8 3.7 1.35 86.8 1696
ES‐8 d S 03° 27' 53.2" E 035° 59' 40.2" 55.4 1.4 19.2 0.98 4.99 5.95 1.2 0.1 3.9 8.0 4.6 0.28 79.7 2.6 3.9 3.6 0.61 78.1 1652
ES‐20 d S 03° 27' 48.075" E 036° 0' 44.91" 53.6 1.5 18.5 1.07 5.48 6.59 1.2 0.2 4.2 9.7 4.2 0.34 94.9 2.8 3.2 3.8 1.34 93.6 1643
ES‐3 d S 03° 28' 25.0" E 035° 59' 41.7" 55.1 1.4 19.2 1.01 5.14 6.15 1.1 0.1 3.9 8.4 4.2 0.30 82.1 2.6 3.1 3.5 2.11 96.1 1677
ES‐7 d S 03° 28' 0.464" E 035° 59' 45.165" 55.0 1.4 19.0 0.99 5.07 6.09 1.0 0.2 4.2 8.0 4.8 0.30 82.0 2.9 2.6 3.3 1.40 83.7 1755
ES‐24 d S 03° 27' 22.288" E 036° 1' 14.314" 55.1 1.3 19.3 0.99 5.06 5.92 1.0 0.2 4.1 8.5 4.2 0.29 78.3 2.5 3.0 3.7 1.48 105.7 1747
ES‐33 d S 03° 26' 47.953" E 035° 59' 7.165" 56.2 0.9 19.8 0.87 4.46 5.24 0.8 0.2 3.1 8.9 4.6 0.18 57.2 11.6 2.8 6.7 1.69 111.1 1792

Standards
W‐2 m 52.79 1.06 15.27 10.86 – – 6.48 0.17 10.9 2.17 0.63 0.13 – – – 85 – 19 192
BIR‐1 m 47.36 0.95 15.35 11.33 – – 9.63 0.17 13.2 1.75 0.03 0.03 – – – 197 – 0 106
JB‐1a m – – – – – – – – – – – – 203.68 396.8 – – – – –

RGM‐1 d 74.02 0.3 14.3 1.9 – – 0.30 0.0 1.18 4.2 4.07 0.05 11.91 3.5 5.50 3.45 9.43 144.66 96.15
SDC‐1 d 66.73 1.0 16.1 6.8 – – 1.71 0.1 1.43 2.1 3.59 0.14 93.40 60.2 14.92 33.02 4.11 133.23 181.24
W‐2a d 53.44 1.1 15.7 10.9 – – 6.41 0.2 10.85 2.3 0.70 0.13 289.43 95.8 38.17 72.01 0.98 21.33 202.90
688.0 d 49.13 1.2 17.7 10.4 – – 8.62 0.2 12.19 2.1 0.19 0.13 244.23 310.3 36.41 144.19 0.03 2.15 165.11
AII‐92 d 58.98 1.0 16.9 6.6 – – 1.52 0.1 4.89 4.1 2.83 0.17 302.13 231.5 37.61 98.99 0.03 1.39 131.55
AGV‐1 d 49.95 1.7 15.3 10.8 – – 7.48 0.2 11.07 2.9 0.10 0.51 119.50 9.3 11.99 34.18 1.28 69.24 644.75
BIR‐1 d 47.94 0.9 15.5 11.4 – – 9.73 0.2 13.30 1.8 0.08 0.02 310.26 377.5 41.58 164.41 0.00 0.18 104.07
DNC‐1 d 47.09 0.5 18.3 9.9 – – 10.11 0.1 11.13 1.9 0.22 0.06 151.18 285.4 31.33 266.73 0.19 3.82 138.53
G‐2 d 67.88 0.5 14.9 2.6 – – 0.73 0.0 1.93 3.9 4.58 0.1 33.53 7.49 3.27 3.4 1.38 174.53 458.07

m = Michigan State University Laboratory.
d = Duke University Laboratory.
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Sample Ba Y Zr Nb Hf Ta Pb Th U La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Zn Cu

ES‐16 598 22.9 207.0 83.5 5.58 5.42 5.23 9.19 1.98 63.1 116.9 14.90 57.84 10.54 2.95 7.41 1.03 .13 0.88 2.16 1.67 0.21 – –

ESMT‐6 672.12 33.59 317 88.61 8.57 6.14 3.49 10.08 1.67 86.56 151.23 19.5 76.44 13.98 3.76 12.27 1.58 .12 1.31 3.1 2.54 0.35 101 115
ESMT‐7 767.97 36.16 330 96.75 8.92 6.98 3.79 11.16 1.55 96.34 162.84 21.11 82.84 14.79 3.99 13.18 1.71 .79 1.43 3.32 2.68 0.37 107 179
ES‐34 934 56.2 487.2 151.2 12.94 11.94 5.68 21.28 4.15 163.6 329.1 43.02 171.33 30.62 8.80 21.56 2.94 2.44 2.01 4.80 3.70 0.47 – –

ES‐21 736 45.1 464.0 165.6 10.07 9.32 8.56 13.24 3.76 116.4 214.1 26.13 92.09 16.61 4.61 14.53 2.03 .92 1.70 4.14 3.21 0.41 – –

ES‐27 598 55.0 565.2 189.7 11.94 12.19 11.21 26.66 3.94 179.1 367.4 46.98 171.32 28.80 7.19 23.05 3.04 3.97 2.23 5.17 3.52 0.44 – –

ES10‐2008 512.24 58.34 536 168.49 12.68 13.92 4.92 22.87 3.24 164.28 288.22 37.84 152.25 27.12 7.27 23.48 2.95 2.69 2.28 5.22 4.26 0.55 137 313
ESMT‐5 736.88 53.89 525 161.79 12.08 11.14 5.89 17.29 1.76 139.21 234.3 29.25 111.7 19.45 5.28 17.73 2.35 0.65 2.06 4.89 4.22 0.56 136 93
ESMT‐2 1251.22 51.77 514 156.18 11.98 5.75 10.03 5.29 2.97 100.39 127.62 14.51 53.37 11.55 3.63 12.19 1.78 .32 1.85 4.5 3.86 0.53 157 195
ES17‐2008 1378.07 49.71 536 174.53 12.63 11.98 9.26 18.24 1.25 156.01 260.16 31.66 117.53 19.93 5.45 18.04 2.29 0.02 1.91 4.67 4.11 0.58 136 58
ES14‐2008 1626.04 44.68 502 175 10.41 8.79 12.98 17.99 2.98 123.77 216.46 23.5 82.96 14.51 4.08 13.69 1.82 8 1.58 3.98 3.64 0.5 130 31
ESMT‐4 1490.35 40.43 556 175.15 10.73 7.6 17.59 20.98 2.06 117.61 200.14 21.2 72.77 12.62 3.64 12.31 1.62 .29 1.45 3.79 3.56 0.49 130 42
ES‐18 1443 36.7 521.1 148.8 10.26 6.16 22.00 23.94 2.29 117.7 191.7 20.13 65.33 10.43 3.15 8.92 1.36 .92 1.27 3.35 3.26 0.47 – –

ES‐6 1581 38.8 544.8 162.2 11.03 6.64 23.93 24.92 5.76 120.7 204.5 21.14 67.28 10.88 3.27 9.32 1.41 .16 1.33 3.60 3.52 0.49 – –

ES‐2 1544 40.4 550.8 161.1 11.21 6.84 16.78 27.10 6.05 125.3 205.7 22.59 74.67 11.74 3.44 9.48 1.40 .47 1.43 3.95 3.70 0.51 – –

ES‐13 1511 39.9 516.2 157.0 10.83 6.80 21.15 23.40 5.77 121.7 205.5 22.12 74.32 12.15 3.66 9.97 1.45 .40 1.41 3.77 3.62 0.50 – –

ES‐8 2387 37.2 504.0 149.2 11.07 6.63 23.18 25.12 5.70 108.4 184.8 20.02 69.43 11.27 3.76 8.65 1.28 .86 1.33 3.75 3.85 0.51 – –

ES‐20 1517 40.7 512.3 153.6 11.16 6.91 18.84 23.42 5.42 121.9 202.9 22.03 73.93 11.84 3.74 9.72 1.45 .56 1.41 3.84 3.86 0.54 – –

ES‐3 1543 39.9 530.0 157.2 10.97 6.72 23.25 26.60 4.23 120.7 202.7 22.33 75.50 12.06 3.59 9.66 1.43 .62 1.45 3.97 3.87 0.52 – –

ES‐7 1532 39.2 553.9 162.8 11.02 6.90 23.50 25.20 6.10 122.3 204.1 21.77 71.05 11.38 3.41 9.76 1.46 .48 1.38 3.63 3.63 0.49 – –

ES‐24 1599 40.6 556.6 161.3 11.74 7.17 22.21 26.79 6.16 128.1 209.0 22.63 74.01 11.74 3.60 9.60 1.42 .42 1.40 3.83 3.83 0.51 – –

ES‐33 2127 37.6 515.0 147.7 9.99 5.31 28.03 28.82 7.22 122.5 189.7 19.74 64.79 9.73 3.35 7.81 1.20 .20 1.23 3.43 3.59 0.47 – –

Standards
W‐2 – – 105 – – – – – – – – – – – – – – – – – – – 74 81
BIR‐1 – – 17 – – – – – – – – – – – – – – – – – – – 64 135
JB‐1a 490.47 24.41 28.09 3.61 1.83 6.19 9.38 1.63 38.11 64.98 7.18 26.88 5.31 1.53 5.25 0.76 .11 0.85 2.28 2.21 0.33 – –

RGM‐1 790.59 23.16 223.70 8.86 5.525 0.905 21.146 13.827 5.917 21.94 41.70 5.015 17.199 3.620 0.691 3.492 0.571 .477 0.713 2.039 2.506 0.376 32.06 10.72
SDC‐1 625.36 35.30 41.95 19.07 1.239 1.240 24.342 12.525 3.164 40.17 84.84 11.079 42.837 8.343 1.702 6.842 1.065 .442 1.304 3.574 3.680 0.490 106.59 35.71
W‐2a 181.61 24.37 98.70 7.91 2.573 0.549 7.934 2.291 0.591 11.40 23.51 3.147 12.677 3.200 1.091 3.861 0.679 .099 0.813 2.173 2.409 0.341 78.82 100.73
688.0 158.69 20.65 55.54 4.24 1.507 0.325 2.328 0.331 0.256 5.12 11.31 1.687 8.361 2.283 0.931 2.869 0.490 .289 0.731 2.098 2.217 0.328 75.99 84.76
AII‐92 4.40 39.84 124.20 2.56 3.135 0.566 0.617 0.122 0.109 3.78 12.02 2.229 12.262 4.085 1.349 5.494 0.970 .631 1.407 4.088 4.328 0.598 92.18 67.15
AGV‐1 1262.07 20.78 242.55 14.86 5.187 0.860 37.788 6.896 2.228 39.57 69.12 8.894 32.974 5.959 1.768 4.960 0.712 .727 0.695 1.878 1.824 0.264 87.91 79.44
BIR‐1 5.27 15.64 14.41 0.55 0.570 0.102 2.951 0.007 0.009 0.50 1.74 0.339 2.268 1.084 0.455 1.792 0.333 .541 0.573 1.635 1.739 0.249 69.45 116.24
DNC‐1 100.23 18.20 39.63 1.66 0.981 0.144 5.969 0.256 0.062 3.60 7.84 1.115 5.034 1.384 0.530 1.992 0.373 .850 0.668 1.890 2.032 0.304 64.60 102.35
G‐2 1854.24 9.65 82.80 12.41 1.965 0.782 31.490 25.563 2.341 88.08 160.29 17.21 52.24 7.116 1.714 4.473 0.556 .196 0.347 0.919 0.719 0.086 81.49 11.1
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Table 2
Sample locations and 39Ar/40Ar dating results.

Sample ID Material Integrated age
[Ma]

% Rad % 39Ar in
plateau

Plateau age
[Ma]

MSWD Isochron age of plateau steps
[Ma]

40Ar/36Ar intercept MSWD Selection criteria

ESMT-6 Matrix 6.97±0.04 18.0 No plateau II–V
Whole rock 6.52±0.03 30.2 69.4 6.20±0.03 1.5 5.70±0.40 307±10 0.7 II–V
Nepheline 16±3 10.1 100.0 15±4 1.6 IV–V

ESMT-7 Matrix 6.24±0.01 74.3 33.4 6.00±0.02 1.5 6.04±0.06 291±6 0.8 II–VI
ES-21 Whole rock 6.11±0.03 55.6 No plateau II
ES10-2008 Matrix 6.03 ±0.01 85.3 No plateau II

Whole rock 5.70±0.20 72.5 No plateau II
ESMT-5 Matrix 6.34±0.02 83.2 No plateau II

Matrix 6.26±0.02 85.4 No plateau II
Nepheline 4.80±0.40 3.0 89.2 6.40±0.30 1.9 7.2±1.2 292±5 1.6 V

ESMT-2 Matrix 5.98±0.01 55.0 79.0 5.91±0.01 0.8 5.91±0.14 295±12 1.0 I
Whole rock 5.96±0.01 65.7 53.8 5.89±0.01 1.4 5.85±0.07 305±15 1.2 I
Nepheline 6.43±0.01 96.8 No plateau III

ES17-2008 Matrix 6.24±0.01 89.7 No plateau II
Nepheline 16.03±0.17 67.4 36.6 6.10±0.30 0.9 6.58±0.13 282±16 0.4 IV
Matrix 6.22±0.02 89.2 41.3 6.06±0.03 1.8 6.01±0.17 340±180 2.0 II

ES14-2008 Nepheline 5.83±0.06 85.3 97.4 5.86±0.07 1.8 5.95±0.14 250±50 1.5 I
Matrix 5.95±0.01 92.5 50.7 5.90±0.01 2.0 5.81±0.09 410±100 0.1 II

Matrix (2) 5.91±0.01 93.0 48.0 5.82±0.02 2.4 5.82±0.08 290±90 2.9 I
Matrix (2) 5.88±0.01 93.0 38.4 5.74±0.02 1.4 5.76±0.08 280±90 1.6 II

ESMT-4 Nepheline 5.84±0.01 90.7 70.2 5.87±0.01 2.1 5.88±0.03 282±18 1.7 I
Matrix 5.92±0.01 89.6 No plateau II

Whole rock 5.90±0.01 94.3 37.1 5.77±0.01 0.6 5.77±0.04 310±80 0.9 II
ES-18 Whole rock 5.76±0.02 71.4 58.0 5.79±0.01 1.4 5.82±0.04 285±14 1.2 I
ES-8 Whole rock 5.90±0.02 84.1 67.9 5.85±0.02 0.3 5.86±0.07 280±60 0.4 I
ES-3 Whole rock 5.76±0.02 78.4 87.2 5.76±0.02 1.6 5.76±0.04 297±3 1.6 I

In bold are ages that are considered reliable. The plateau ages errors include error in j. Plateau ages are in good agreement with isochron ages. Plateaus with less than ~40% of the
total 39*Ar released are shown in italics. The criteria used in the selection of the analysis are: (I) presence of a plateau, (II) the spectra shows decreasing age with increasing
temperature, (III) the spectra are concave shaped, (IV) the spectra are chaotic due to the influence of a secondary component, (V) the analysis gave low % radiogenic argon, and
(VI) the plateau is characterized by a low % of the total 39Ar released.
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suites (Fig. 7). Primitive mantle-normalized incompatible trace element
diagrams of the three most primitive samples (MgO>9 wt.%) show a
pattern comparable to ocean island basalts (Sun and McDonough,
1989) but with much higher concentrations for incompatible trace ele-
ments Th, Nb, Ta, La, Ce and Nd. These relatively primitive Essimingor
samples also exhibit negative anomalies in Pb, K and P (Fig. 7b). Values
of Sr/Ce for the primitive samples (6.4–7.7) fall within the range
expected for ocean island basalt (Sun and McDonough, 1989).

The wide variation in radiogenic isotopic ratios at Essimingor
(Fig. 8a, b) suggests involvement of at a minimum two components,
one of which has elevated Pb isotopic values within the range of
HIMU-like samples and a more enriched component (Table 3). Overall
the 87Sr/86Sr and 143Nd/144Nd isotopic ratios are in the middle of
the mantle array (87Sr/86Sr 0.703566 to 0.704772 and 143Nd/144Nd
0.512473 to 0.512761), whereas the Pb ratios are highly radiogenic
Table 3
Radiogenic isotope results.

Sample 87Sr/86Sr ±2σ 143Nd/144Nd ±2σ 206Pb/204Pb

ES‐16 0.703630 0.000006 0.512654 0.000015 21.006
ESMT‐6 0.704326 0.000008 – – 20.130
ESMT‐7 0.704215 0.000006 0.512657 0.000007 20.127
ES‐34 – – 0.512716 0.000007 20.782
ES‐21 0.704078 0.000005 0.512722 0.000015 21.150
ES‐27 0.704026 0.000006 0.512745 0.000006 21.299
ES10‐2008 0.703635 0.000006 0.512753 0.000003 21.009
Same 20.992
ESMT‐5 0.704772 0.000006 0.512622 0.000010 20.050
ESMT‐2 0.703740 0.000006 0.512600 0.000030 21.283
ES17-2008 0.704722 0.000006 0.512473 0.000014 –

ES14‐2008 0.705431 0.000005 0.512434 0.000079 20.303
ESMT‐4 0.705601 0.000008 0.512487 0.000003 20.114
ES‐18 0.705913 0.000008 0.512415 0.000008 19.719
ES‐8 0.706217 0.000008 0.512407 0.000003 19.635
ES‐3 0.706241 0.000011 – – 19.624

NIST 981 16.94142

Pb method: t = TIMS; p = Fisons Plasma 54 (MC-MS‐ICPMS).

Please cite this article as: Mana, S., et al., Geochronology and geochemist
mantle beneath the North Tanzanian Divergence zone (East African Rift
with 206Pb/204Pb values ranging from 19.6 to 21.3. The 207Pb/204Pb
values are above the NHRL, whereas 208Pb/204Pb values lie on or near
the NHRL. The Sr, Nd and Pb isotopic data all correlate well with indices
of fractionation, in particular 87Sr/86Sr values increase while 143Nd/
144Nd and 206Pb/204Pb decrease consistently with increasing bulk rock
SiO2 (Fig. 9).

5. Discussion

5.1. Timing of Essimingor activity

Laser-incremental heating 40Ar/39Ar analyses of whole rock, matrix
and nepheline separates of the Essimingor lavas yield plateau ages
that range from 5.76±0.02 Ma to 5.91±0.01 Ma. These ages restrict
the duration of the Essimingor's volcanism represented by our samples
±2σ 207Pb/204Pb ±2σ 208Pb/204Pb ±2σ Pb method

0.001 15.823 0.001 40.676 0.005 p (N=3)
0.002 15.742 0.002 40.180 0.005 t
0.001 15.741 0.001 40.145 0.003 t
0.001 15.793 0.000 40.591 0.002 p(N=2)
0.008 15.828 0.006 40.770 0.015 p(N=3)
0.005 15.916 0.004 40.624 0.012 p(N=3)
0.002 15.835 0.001 40.713 0.004 t
0.002 15.798 0.001 40.656 0.003 t
0.002 15.742 0.001 40.149 0.004 t
0.004 15.869 0.003 40.653 0.007 t
– – – – – t

0.002 15.881 0.002 40.583 0.006 t
0.005 15.804 0.004 40.587 0.011 t
0.004 15.778 0.003 40.529 0.008 p(N=3)
0.002 15.774 0.002 40.534 0.007 p(N=3)
0.003 15.773 0.002 40.546 0.007 p(N=3)

0.00317 15.49661 0.00305 36.70262 0.00827 p(N=20)
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Fig. 2. 40Ar/39Ar incremental-heating spectra. The plateau ages are weighted averages of the individual plateau steps. Errors are 2σ confidence level. Steps included in the plateaus
are bracketed by arrows. Based on the selection criteria of Table 2 the top six plots are preferred ages, whereas the bottom two are examples of the rejected criteria.
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Fig. 3. Inverse isochron plots. (a) Data for ESMT-6 whole rock are well behaved with little scattering along a line fit (MSWD=0.7) and 40Ar/36Ar intercept is indistinguishable from
atmospheric ratios (40Ar/36Ar Int.); (b) Data for ES17-2008 nepheline reveals two components.

8 S. Mana et al. / Lithos xxx (2012) xxx–xxx
to approximately 150±20 kyr. Our 40Ar/39Ar ages are roughly 2 myr
younger than K–Ar ages previously reported by Bagdasaryan et al.
(1973). It is unclear if this difference in age is due to limitations of
the K–Ar method or if the K–Ar ages were obtained from flows
unsampled by our team; the location from which the Bagdasaryan
samples were collected is unknown and therefore not re-testable.
Nevertheless, due to accessibility reasons the sample is most likely
from the same area. Nepheline separates from some of our dated
samples give anomalous integrated (K–Ar equivalent) ages as old
as 16 Ma (Table 2). We interpret the old ages of Bagdasaryan sam-
ples as possibly reflecting excess or trapped Ar in nepheline incorpo-
rated in the whole rock samples.

5.2. Source mineralogy and depth of melting

Xenolith studies from the NTD indicate the presence of a
metasomatized lithospheric mantle beneath the area (e.g. Aulbach et
al., 2011; Dawson and Smith, 1988, 1992; Pike et al., 1980; Rudnick et
al., 1993). The study of incompatible trace elements is here used to es-
timate the mineralogy of the melting source giving useful constraints
on the mantle's thermal characteristics and metasomatic history. To
mitigate the effects of fractionation and assimilation on trace element
abundances we focus our discussion on the most primitive samples
that contain >9 wt.% MgO (Fig. 7b). The negative Pb anomaly of
Essimingor's more primitive samples in conjunction with Sr/Ce values
within the range expected for oceanic basalt confirm their lack of signif-
icant crustal assimilation, assuming an upper continental crust of over-
all granitic composition. Primitive mantle-normalized REE variations
N
a 2O

+
K
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Essimingor evolved samples        

Fig. 4. Total alkali versus silica diagram (Le Maitre et al., 1989) for Essimingor lavas.
Major element values are reported in wt.%.
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from Tb to Lu are steep to concave upward (Fig. 7b). This pattern sug-
gests the presence of a residual mineral phase in which these elements
are compatible, e.g. garnet. Potassium depletion correlated with Ba en-
richment and slight Rb depletion, thatmanifests as Ba/Rb>11 (Sun and
McDonough, 1989), implies the presence of amphibole in the source
(Adam et al., 1993; LaTourette et al., 1995). Low Rb and Cs abundances
with high Ba contents have been explained in other alkaline rocks as in-
dicating the presence of phlogopite in the source (Foley and Jenner,
2004; Platz et al., 2004). Xenoliths containing both amphibole and
phlogopite from northern Tanzania (Dawson and Smith, 1988, 1992)
support the presence of both of these phases in the source region. The
observed anomalously high Zr/Hf values (37–52) at Essimingor are a
characteristic signature of carbonatite metasomatism (Dupuy et al.,
1992; Rudnick et al., 1993). In summary, the trace elements of the
most primitive samples indicate partial melting of a metasomatized
lithospheric mantle that includes garnet, phlogopite and small amounts
of amphibole. The coexistence of garnet and phlogopite in the source
suggests depth of melting from ~80 km up to ~150 km (Foley, 1993;
Olafsson and Eggler, 1983; Sato et al., 1997), consistent with the base
of the lithosphere in the eastern branch identified using Rayleigh
wave tomography (120–160 km;Weeraratne et al., 2003) and indicat-
ing that Essimingor represents the initial phase of lithospheric thinning
through melting.

5.3. Effects of crustal assimilation

Open system processes are required from the observed increase in
Sr, Nd, and Pb isotopic values with indices of fractionation (Fig. 9).
Although the major elements show well-defined trends, fractional
crystallization alone cannot explain the broad variation of some
incompatible trace elements. Ce/Pb has a large variation (Fig. 6b) and
samples with low Ce/Pb values have high Pb contents, which imply
crustal assimilation overprinting the mantle signature (Hofmann et
al., 1986; Sun andMcDonough, 1989). In a primitive-mantle normalized
incompatible trace element diagram (Fig. 7c), Pb shows a positive
anomaly for samples with low MgO content and the higher Pb abun-
dances correspond to low Ce/Pb values (Fig. 6b) consistent with crustal
assimilation. Other elements such as U, Th and Cs, which are both
fluid-mobile and generally highly abundant in the shallow crust, display
negative correlation.

5.4. Source modeling: partial melting and AFC

Isotopes and rare earth elements present clear systematics, which
underline the presence of slightly different degrees of partial melting,
source heterogeneity and AFC processes. Quantitative models were cal-
culated using IGPET petrologic software (Terra Softa Inc.). The partition
coefficients used are from theGERMwebsite (Geochemical Earth Refer-
ence Model). We model Essimingor's mantle source mineralogy by
ry of the Essimingor volcano: Melting of metasomatized lithospheric
), Lithos (2012), http://dx.doi.org/10.1016/j.lithos.2012.09.009
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back-calculating under the assumption that OIB-likemagmas, similar in
trace elements composition to Essimingor basalts (Fig. 7b) form by
melting 5% of a source composed of 20% clinopyroxene, 20%
orthopyroxene and 60% olivine. Partial melting of this modeled mantle
with additional minor garnet, phlogopite and amphibole have been
modeled in Fig. 6c (olivine 60%, clinopyroxene 16%, orthopyroxene
16%, phlogopite 5%, amphibole 2% and garnet 1%,with increasing garnet
(up to 3%) compensated by a reduction in modal olivine). In this plot
La/Sm variations indicate different degrees of partial melting, and
increasing Sm/Y values reflect increasing amounts of garnet in the
source. Note that small variations in the garnet content can explain
the range of plausible parental compositions observed at Essimingor
with degrees of partial melting between 2 and 3%.

A quantitative model of the proposed crustal assimilation was
attempted after a survey of various modeled crustal compositions
Please cite this article as: Mana, S., et al., Geochronology and geochemist
mantle beneath the North Tanzanian Divergence zone (East African Rift
(Rudnick and Fountain, 1995; Rudnick and Gao, 2003; Shaw et al.,
1986; Taylor and McLennan, 1985, 1995) and EAR local possible
contaminants (e.g. Bell and Simonetti, 1996; Bell and Tilton, 2001;
Cloutier et al., 2005; De Mulder, 1985; Kalt et al., 1997; Mansur,
2008; Manya et al., 2007). The large increase in Sr isotope ratios for
the evolved samples (Fig. 6a) indicates that the contaminant has
very radiogenic Sr isotope values, typical of an upper crustal compo-
nent (Rollinson, 1993). Any AFC model is an approximation, but this
is even more true in the presence of a complex tectonic setting such
as the one of North Tanzania, resulting in a crust that can be hetero-
geneous at all depths. We selected a crustal sample that appears to
better describe the major and trace element features of a possible
contaminant as it provides a reasonable fit to the observed data.
Sample TA-47 has been described as a Na-rich granitoid; it is from
the Musoma–Mara Greenstone Belt, northern Tanzania (Manya et al.,
ry of the Essimingor volcano: Melting of metasomatized lithospheric
), Lithos (2012), http://dx.doi.org/10.1016/j.lithos.2012.09.009
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2007), and forms part of the Tanzanian Craton. We performed AFC
modeling with the assimilation of sample TA-47, and found that the
best fit was obtained using a ratio Ra (mass assimilated divided by
mass crystallized; DePaolo, 1981) of 1.1. Sample TA-47 does not have
an 87Sr/86Sr isotope value so we introduced two hypothetical values
Please cite this article as: Mana, S., et al., Geochronology and geochemist
mantle beneath the North Tanzanian Divergence zone (East African Rift
creating a range of possibilities. The 87Sr/86Sr versus 143Nd/144Nd iso-
topes plot (Fig. 6a) shows a good fit for 87Sr/86Sr values ranging
between 0.708 and 0.714.

Our AFCmodel fits the REE other than Yb and Lu quite well (Fig. 6c).
The LILE and the HFSE (not shown) are also fit by this model, other than
for Zr and Nb that present a misfit. These poor fits are a reminder that
the “best” crustal xenolith has not yet been found, or that no
single sample can represent the complex process of crustal assimilation
observed, although its composition is generally well described by the
sample selected. Note that three samples (ES10-2008, ES-27, ES-34)
are distinct by being enriched in various rare earth elements resulting
in, for example, anomalously high Ce/Pb values (Fig. 6b). These samples,
grouped in Figs. 5 and 6, can be explained by melting a source that is
slightly more enriched in garnet.

Shallow fractional crystallization affects the major element behav-
ior at Essimingor. The main mineral phase fractionating at Essimingor
during the early stages is clinopyroxene rather than olivine. This
observation is consistent with the major element compositions of
Essimingor samples compared to experimentally-derived alkalic
liquids over a range of pressures from 1 atm to 20 kbar (Sack et al.,
1987). Based on the work of Albarède et al. (1997) and O'Hara
(1968), clinopyroxene dominates the fractionation at high pressure,
with stability crossover between olivine and clinopyroxene at 9±
2 kbar. Based on petrography, at Essimingor the liquidus mineral is
clinopyroxene, hence mineral fractionation is happening at ~25 km
depth (Albarède et al., 1997).

5.5. Mixing of two distinct lithospheric mantle sources

The silica-undersaturated lavas from Essimingor are derived from
melting of a lithospheric mantle containing garnet, phlogopite and
minor amounts of amphibole that were added by one or more events
of metasomatism. There is a general good agreement between the
trace element abundance pattern observed at Essimingor and those
observed in portions of the western branch of the East African Rift
(Toro Ankole; Fig. 7b). At Essimingor, variations in 143Nd/144Nd
against key incompatible trace element ratios (e.g. Th/Nb, Zr/Hf)
somewhat overlap the field of regional convergence described by
Furman and Graham (1999) as a common lithospheric mantle. How-
ever, the lithospheric mantle defined by Essimingor is isotopically
distinct in 207Pb/204Pb (not shown) and 208Pb/204Pb space (Fig. 8b)
from the one observed in the western branch of the EAR (Toro
Ankole; Davies and Lloyd, 1989; Virunga; Rogers et al., 1992, 1998).
Virunga and Toro Ankole are indicative of melts derived from an
ancient metasomatized lithosphere. Essimingor samples may repre-
sent melting of a different (and in this case, younger) lithosphere
consistent with the distribution of the Proterozoic Mozambique
Belt (Macdonald et al., 1995, 2001; Möller et al., 1998; Rogers et al.,
2000). The presence of a cluster of Essimingor samples which
trend towards lower 206Pb/204Pb values may represent evidence of
material contribution from both of these two lithospheres (Fig. 8b),
while evolved lavas appear to indicate additional incorporation
of granitic crustal material during AFC processes. The NTD and
Essimingor volcano are located at a fundamental tectonic boundary
between the Tanzanian Craton and the Mozambique Belt (Smith,
1994), and the Pb isotopic compositions of Essimingor basalts appear
to record an area in which rising magmas are sampling multiple
lithospheres. These isotopic results agree with the model from Fritz
et al. (2009) who proposed that the Proterozoic Mozambique Belt is
thrust westward over the Archean Tanzanian Craton.

5.6. Origin of metasomatism

Isotopic compositions of peridotite xenoliths in Tanzania are
interpreted as the result of a variable degree of metasomatism by
silicate and/or carbonatite melts (e.g. Aulbach et al., 2008, 2011;
ry of the Essimingor volcano: Melting of metasomatized lithospheric
), Lithos (2012), http://dx.doi.org/10.1016/j.lithos.2012.09.009
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Chesley et al., 1999; Cohen et al., 1984; Dawson and Smith, 1988,
1992; Lee and Rudnick, 1999; Lloyd et al., 1985; Pike et al., 1980;
Rudnick et al., 1993). Aulbach et al. (2011) underlined evidence
for the presence of more than one episode of mantle modification.
One event was associated to the recent rift-related intrusion of
sublithospheric melts and fluids already identified by Rudnick et al.
(1993). Based on the similarity between the isotopic signature of
the xenoliths and young primitive east African carbonatites and ba-
salts this metasomatism occurred recently. In contrast, other episodes
of metasomatism are older and characterized consistently by higher
87Sr/86Sr values and lower 143Nd/144Nd values. The Essimingor iso-
topes broadly parallel with the East African carbonatite distribution
that Bell and Simonetti (2010) interpret as related to the recent
volcanism. The range of variation of Sr and Nd isotopes at Essimingor
are wide and define a field much larger than the range defined by
Oldoinyo Lengai (Fig. 8a), and consistent with the distribution of
peridotite xenoliths from Lashaine and Labait that the authors inter-
pret as ancient enriched lithospheric (Aulbach et al., 2011; Fig. 8a
except few outliers extending towards higher 87Sr/86Sr values). This
study cannot provide a constraint on the timing of metasomatism,
however, based on the identification of our source as ametasomatized
Please cite this article as: Mana, S., et al., Geochronology and geochemist
mantle beneath the North Tanzanian Divergence zone (East African Rift
lithospheric mantle with a HIMU-like signature and the absence of
a clear overlap between the Essimingor samples and the modeled
plume, we choose to interpret the observed metasomatism as ancient
metasomatism, unrelated to the modern impinging of the plume.

5.7. NTD temporal isotopic variations

Integration of the various available NTD isotopic data underlines the
presence of wide Pb variations that, being inconsistent with spatial
distribution, we interpret as temporal (Fig. 10a and b). The older NTD
mafic extrusives (5.9 to 3 Ma) have distinctlymore radiogenic Pb isoto-
pic compositions than samples from the younger volcanism (2.5 Ma to
Present) (Fig. 10b). The variations in 87Sr/86Sr and 143Nd/144Nd appear
not to be time dependent, although the younger extrusives extend
further towards enriched mantle components (Fig. 10a). The older
extrusives have Sr–Nd–Pb isotopic compositions that plot consistently
close to HIMU-like values (even before being filtered for MgO>6 wt.%
and 20bCe/Pbb30, Fig. 10b), whereas in Pb space younger mafic volca-
nics approach the Afar plume composition (Furman et al., 2006a and
references therein) and extend towards lower Pb values. It is unlikely
that the Afar plume extends as far south as the NTD. The Kenya plume
ry of the Essimingor volcano: Melting of metasomatized lithospheric
), Lithos (2012), http://dx.doi.org/10.1016/j.lithos.2012.09.009
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is closer geographically and in Sr–Nd space. Unfortunately, the Pb iso-
topic signature of the Kenya plume has not been established. The
apparent time dependence in the Pb isotopic signatures is intriguing
and underlines the necessity of further isotopic studies in order to
make a clearer dynamic model of the area. On the basis of these limited
data, we suggest that the oldest NTD lavas, with isotopic compositions
consistent with the involvement of a HIMU-like source, might be de-
rived from the melting of sub-continental lithospheric mantle caused
by heat transfer from an impinging plume head, while younger NTD
Please cite this article as: Mana, S., et al., Geochronology and geochemist
mantle beneath the North Tanzanian Divergence zone (East African Rift
lavas reflect greater stages of lithospheric removal and higher contribu-
tions from a plume-like component.

6. Summary

Laser-incremental heating 40Ar/39Ar analyses of the Essimingor
lavas yield plateau ages that range from 5.76±0.02 Ma to 5.91±
0.01 Ma, about 2 myr younger than K–Ar ages of ~8 Ma previously
reported. These younger ages underline the importance of 40Ar/39Ar
studies of rift volcanoes in order to achieve a more detailed rift evolu-
tion understanding. Nonetheless, our new 40Ar/39Ar ages support the
widespread interpretation of Essimingor as the oldest NTD volcano.

Essimingor erupted undersaturated lavas evolving from picrite to
tephrite, nephelinite and tephri-phonolite. Themajor elements suggest
an influence of fractional crystallization while the isotopic and in-
compatible trace element variations demand open systemprocesses in-
volving the assimilation of granitic crust. For the most primitive lavas,
ry of the Essimingor volcano: Melting of metasomatized lithospheric
), Lithos (2012), http://dx.doi.org/10.1016/j.lithos.2012.09.009
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trace element variations are consistent with melting a metasomatized
sourcewith residual garnet, phlogopite, andminor amphibole. This pro-
cess can be modeled successfully with low degrees of partial melting
(b4%) of a source characterized by a slightly variable garnet content.
High (La/Yb)n values and REE abundances in Essimingor mafic lavas
are consistent with melting in the garnet and phlogopite stability zone
indicating the presence of a relatively thick lithosphere. Essimingor
represents the beginning of a process of lithospheric removal bymelting
during extension. The Pb isotopic distribution at Essimingor is indicative
of contributions from two distinct lithospheric mantles caused by the
location of the NTD at a fundamental tectonic boundary between the
Archean Tanzanian Craton and the Proterozoic Mozambique Belt.
Appendix A

Sample
code

Microscopic description

ES-2 Fluidal glomeroporphyritic texture. Matrix (85%) glassy with feldspar and p
long, titanite (3%) up to 2 mm long, opaque (2%), and melilite (1%).

ES-3 Fluidal glomeroporphyritic texture. Matrix (85%) glassy with feldspar and pyr
up to 3 mm long, titanite (4%) up to 1.8 mm long, opaque (2%), and melilite

ES-6 Fluidal porphyritic texture with some mineral cluster. Matrix (80%) glassy w
clinopyroxene (12%) up to 3.5 mm long, titanite (4%) up to 1 mm long, opaq

ES-7 Porphyritic texture with some mineral cluster. Matrix (80%) glassy with fel
(12%) up to 5 mm long, titanite (3.5%) up to ~1 mm long, nepheline (2%), o
(CPX+opaque+neph+sphene).

ES-8 Fluidal porphyritic texture with sparse mineral cluster. Matrix (85%) glassy w
to 2.5 mm long, titanite (3%) up to ~2 mm long, opaque (2%), nepheline (1

ES-13 Fluidal seriated porphyritic texture. Matrix (85%) glassy with feldspar, pyrox
long, sphene (2%), opaque (2%), nepheline (2%), melilite (1%). Presence of a

ES-16 Fluidal porphyritic texture. Matrix (90%) glassy with melilite, pyroxene, nep
titanite (1.5%), nepheline (1.5%), and opaque (1%). Presence of autholiths (C

ES-18 Porphyritic texture. Matrix (80%) glassy with nepheline, feldspar and pyrox
titanite (2%), opaque (1%), and apatite (1%). Presence of autholiths (CPX+o

ES-20 Glomeroporphyritic texture. Matrix (90%) glassy with feldspar and pyroxene
(1%), and opaque (1%). Presence of autholiths (CPX+opaque+sphene).

ES-21 Porphyritic texture. Matrix (50%) microcrystalline with mainly nepheline, opa
(35%) up to 4×2 mm, opaque (4%) and nepheline (1%). Presence of calcite xe

ES-24 Fluidal porphyritic texture. Matrix (90%) glassy with feldspar, pyroxene, opa
(2.5%), and titanite (1.5%).

ES-27 Porphyritic texture. Matrix (60%) glassy with pyroxene and opaque microlite
up to 0.5 mm, and perovskite (2%).

ES-33 Fluidal porphyritic texture. Matrix (90%) glassy with melilite, pyroxene and
(5%) up to 1.5 mm long, titanite (2%), opaque (1%), nepheline (1%), melilite

ES-34 Porphyritic texture. Matrix (96%) glassy with opaque, pyroxene and nephel
ES10-2008 Porphyritic texture. Matrix (94%) glassy with opaque and pyroxene microli

(b1%), nepheline (b1%) and sparse perovskite and apatite.
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que and sphene microlites. Phenocrysts: clinopyroxene (6%) up to 4×1 mm, opaque

s. Phenocrysts: beige clinopyroxene (32%) up to 5×1 mm, opaque (4%), apatite (2%)

titanite microlites. Phenocrysts: beige and green pleocroic zonated clinopyroxene
(1%) and sparse apatite. Presence of sparse zeolite and calcite.

ine microlites. Phenocrysts: clinopyroxene (4%) up to 2.5 mm long and opaque (1%).
tes. Phenocrysts: beige clinopyroxene (3%) up to 2.5 mm long, opaque (2%), titanite
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(continued)

Sample
code

Microscopic description

ES14-2008 Porphyritic texture. Matrix (45%) glassy with pyroxene, nepheline and opaque microlites. Phenocrysts: nepheline (30%) up to 2.5×2 mm, clinopyroxene (19%) up
to 1.5 mm long, opaque (5%) and sphene (1%). Presence of sparse calcite xenocrysts with leucite inclusion.

ES17-2008 Fluidal glomeroporphyritic texture. Matrix (65%) glassy with nepheline and pyroxene microlites. Phenocrysts: green and beige clinopyroxene (23%) up to 3×1 mm,
opaque (6%), nepheline (5%) and perovskite (1%). Presence of autholiths (neph+CPX+opaque).

ESMT-2 Seriated porphyritic texture. Matrix (30%) glassy with nepheline, pyroxene and opaque microlites. Phenocrysts: nepheline (50%) up to 4×3.5 mm, clinopyroxene
(15%) up to 4×1 mm, opaque (5%), perovskite (2%) and minor apatite. Presence of two autholiths (neph+CPX+opaque+perovskite) one aphanitic and one
phaneritic.

ESMT-4 Fluidal porphyritic texture. Microcrystalline matrix (30%) with nepheline, pyroxene and melilite into sparse glass. Phenocrysts: nepheline (46%) up to 4×2 mm,
clinopyroxene (18%) up to 3.5 mm long, titanite (3%), opaque (2%) and apatite (1%). Presence of minor calcite and zenolite plugs.

ESMT-5 Porphyritic texture. Matrix (60%) glassy with few nepheline, pyroxene and opaque microlites. Phenocrysts: clinopyroxene (21%) up to 3×2 mm, nepheline (12%),
opaque (6%) and apatite (1%). Presence of minor calcite and zenolite plugs.

ESMT-6 Porphyritic texture. Microcrystalline matrix (30%) with pyroxene, opaque and nepheline microlites. Phenocrysts: clinopyroxene (60%) up to 5×2.5 mm, opaque
(8%) and iddingsitized olivine (2%). Presence of minor calcite and zenolite plugs.

ESMT-7 Porphyritic texture. Microcrystalline matrix (30%) with nepheline, opaque and pyroxene microlites. Phenocrysts: clinopyroxene (59%) up to 5.5×2 mm, opaque
(8%) and iddingsitized olivine (3%).
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Appendix B

Pb isotopic ratio measurements by Multiple Collector Inductively
Coupled Mass Spectrometry (MC-MS-ICPMS).

An alternative procedure to the TIMS to measure Pb isotopes at
Rutgers using a Fisons PLASMA 54multi-collector magnetic sector dou-
ble focusing Inductively Coupled Mass Spectrometer (MC-MS-ICPMS)
was developed and employed for some of the samples (Table 3). A
detailed description of the instrument design can be found elsewhere
(Halliday et al., 1995, 1998; Walder and Freedman, 1992). In general,
the instrument combines a double focusingmagnetic sector mass spec-
trometer with an ICP source. The instrument is equipped with a nine-
collector Faraday array and is configured with an additional 30-cm
radius Electro Static Analyzer (ESA) filter and a Daly detector with
ion-counting capability. The abundance sensitivity achieved with the
additional ESA energy filter is less than 0.3 ppm (measured as the con-
tribution of mass 238 to mass 237 signals).

In this procedure we measured Pb (204, 206, 207, and 208) and Tl
(203 and 205) isotopes. The samples were collected after an ion-
exchange chromatography and were dried down and redissolved
with 1 ml of 0.5 N HNO3. An aliquot of processed sample (containing
about 1 μg total Pb) was diluted to 2–3 ml with 2% ultrapure (Fisher
Optima Grade) Nitric acid and spiked with about 30 μl of Tl standard
(~50 ppm).

For sample introduction we used the ARIDUS II (PFA) fitted with a
100 μl/min PFA micro nebulizer (CETAC Inc.) Typical total signal sen-
sitivity is about 2 e−11 A for a 200 ppb Pb solution. Typical analysis
time was about 20 min (100 ratio measurements). Faraday collectors
were dedicated to masses 202, 203, 204 (axial), 205, 206, 207, and
208. In the presence of Hg, measurement of 202Hg is used to correct
for the contribution of 204Hg to the total 204 beam intensity. Mass
fractionation was determined by comparison of the 205/203 mea-
sured ratio with the theoretical value of 2.3871. Measurement preci-
sion (2 sigma) of the 208/204 207/204, and 206/204 ratios is about
200 ppm and about 100 ppm for the 208/206 and 207/206 ratios
based on repeated measurements of standard NIST 981. An aliquot
of NIST 981 was processed though the ion-exchange chromatography
in order to confirm the absence of contamination and/or artifacts from
sample dissolution and separation. The 981 measurements were con-
sistent with the values reported by Platzner et al. (2001) confirming
the absence of cross contamination and they have been included in
the average of NIST 981 presented in Table 3.
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