Archean phosphorus recycling facilitated by ultraviolet radiation

Orion Farr²,¹, Jihua Hao, Winnie Liu, Nolan Fehon, John R. Reinfelder, Nathan Yee, and Paul G. Falkowski

Contributed by Paul G. Falkowski; received May 4, 2023; accepted June 6, 2023; reviewed by H. J. Cleaves and Eva Steaken

Phosphorus (P) is an essential element in the synthesis of the biomolecules that form protein replication machinery (e.g., ribosomes and related molecules), membranes (e.g., phospholipids), and metabolic energy (e.g., ATP) across the tree of life. However, of the six major elements that comprise biological polymers (H, C, N, O, P, and S), phosphorus is the least abundant on Earth (1). The supply of P to the oceans is constrained by continental and seafloor weathering and the element, as phosphate, is poorly soluble in surface waters. Hence P has long been proposed to be the “ultimate” nutrient that limits marine biological productivity across geologic timescales (2–4). In contrast, many previous studies suggest that in the global ocean, nitrogen fixation limits primary production (5–8). The biological productivity across geologic timescales (2–4). In contrast, many previous studies suggest that in the global ocean, nitrogen fixation limits primary production (5–8). The high dissolved organic P (13, 14). In natural settings, nearly all organic P would undergo theoretical calculations indicate that photodegradation of organic phosphorus could have been a significant source of bioavailable phosphorus in the early ocean and would have fueled primary production during the Archean eon.

Archean ocean | phosphorus cycle | recycling of organic phosphorus | UV radiation | photodegradation

Phosphorus recycling would have been a significant source of bioavailable phosphorus in the early ocean and would have facilitated primary production during the Archean eon. Given that the abiotic hydrolysis of phosphate esters is prohibitively slow, with an average half-life time > 10⁷ y at 25 °C and neutral pH (18), alternative pathways of P recycling would have been required to sustain orthophosphate concentrations in the Archean ocean during the evolution of early marine microbial communities. In the modern ocean, oxidants (e.g., O₂, SO₄²⁻, NO₃⁻) promote efficient P recycling via the oxidative degradation of P-bearing organic compounds (19). In contrast, prior to the oxidation of

Author contributions: J.H., N.Y., and P.G.F. designed research; O.F., J.H., W.L., and N.F. performed research; O.F., J.H., W.L., N.F., J.R.R., N.Y., and P.G.F. discussed the results and wrote the paper.

Reviewers: H.J.C., Tokyo Kogyo Daigaku; and E.S., St. Andrews University.

The authors declare no competing interest.

Copyright © 2023 The Author(s). Published by PNAS.

This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

¹O.F. and J.H. contributed equally to this work.
²To whom correspondence may be addressed. Email: hao@ustc.edu.cn or falko@marine.rutgers.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2307524120/-/DCSupplemental.

Published July 17, 2023.
the atmosphere and surface seawater during the Paleoproterozoic around 2.4 billion years ago (Ga), few sources of oxidants are thought to have been available to drive P recycling (19). Furthermore, Archean seawater was likely rich in reductants (20) that would efficiently scavenge reactive oxygen species (ROS) such as ·OH, thereby limiting their role in the recycling of organic phosphorus.

Various models have attempted to constrain the recycling flux of P in the Archean ocean with estimates ranging between 0.01% and 10% of modern values (19). A diminished rate of P recycling might have limited early marine primary productivity, a condition referred to as phosphorus "famine" (19). Recently, Hao et al. (21) estimated the weathering flux of P and together with a previously estimated recycling flux (22), proposed a total P flux of between 18 and 154 × 10^10 moles P/y in late Archean ocean (21), corresponding to <5% of modern marine primary productivity. However, such estimates did not consider the role of photochemistry, a potentially viable pathway to degrade organic phosphorus in the early anoxic ocean.

Prior to the appearance of the ozone layer in the Paleoproterozoic, ultraviolet (UV) radiation, ranging from 200 to 400 nm, could directly reach the Earth's surface (23) and interact with surface waters, likely reaching a depth of a few to 10 s of meters (24). These high energy photons have been shown to drive many endothermic chemical reactions in seawater (25, 26). It is also well known in the wastewater treatment industry that UV radiation can facilitate the degradation of various organic phosphorus compounds (27, 28), but this observation is based on experiments mainly conducted with synthetic organic phosphorus compounds and the addition of strong oxidants (e.g., H_2O_2, O_2, and NO_3^−), which generate large amounts of ROS following UV radiation. Whether the photodegradation of natural organic phosphorus was possible and prominent under the anoxic/reducing conditions relevant to the Archean ocean remains poorly understood. Moreover, the quantum yield (Φ_A, defined as amount of product formed per spectrally absorbed photon) of organic phosphorus photodegradation, which is critical to quantifying light-driven organic phosphorus recycling in the Archean ocean, is poorly constrained.

Here, we investigate the photodegradation rates of several natural organic phosphorus compounds (adenosine monophosphate or AMP, methylphosphonic acid or MP, and phosphatidylserine or PS; see SI Appendix, section S1) by UV light under anoxic conditions simulating the Archean ocean. These organic phosphorus compounds represent abundant forms of organic phosphorus found in either meteorites (phosphonic acid, like MP; ref. 29) or modern seawater released from decaying biomass (nucleotides and phospholipids, like AMP and PS, respectively; ref. 12) as well as two major types of chemical bonds in natural organic phosphorus, i.e., C-P and C-O-P (12, 30). Meteoritic delivery likely served as the major source of organic phosphorus to prebiotic ocean in early Archean (31), and consequently, phosphonic acid, as the major organic phosphorus compound found in carbonaceous meteorites (29), may have been the major organic phosphorus compound in primitive seawater (31). Moreover, MP is a major constituent of phosphonic acid in carbonaceous meteorites (29). However, following the emergence of life and waning impact events (32), the biosynthesis of organic phosphorus compounds such as nucleotides and phospholipids, although phospholipids may have evolved later (33), should have dominated the supply of organic phosphorus in Archean seawater (30). We therefore measured quantum yields (Φ_A) of the photodegradation of these organic phosphorus compounds in terms of orthophosphate release, and, using these values, estimated the overall UV-driven recycling flux of P in the Archean ocean.

Results and Discussion

Our UV irradiation experiments revealed the rapid release of free phosphate from organic phosphorus photooxidation under anoxic conditions (Fig. 1). Among them, AMP, as a common nucleotide that forms DNA, RNAs and ATP, has a strong absorbance peak at 260 nm due to the optically active π-bonds in its nucleoside group (Fig. 1A; see also SI Appendix, section S2 and Fig. S1). The decrease in UV absorbance of AMP over the course of UV exposure (SI Appendix, Fig. S1), together with an increase in free inorganic phosphate at an initial rate 9.50 × 10^-5 moles P d^-1, demonstrates simultaneous photolysis of both the nucleoside group and C-O-P bond. In comparison, PS, a common component of cellular membranes, released phosphate at a slightly faster initial rate (1.48 × 10^-4 moles P d^-1) than AMP (Fig. 1), probably reflecting the effect of carboxyl groups in PS's side chain via Norrish type reactions (34). In contrast, MP, a trace compound in biology (35) but a major organic-P constituent in carbonaceous meteorites (29), released phosphate during UV exposure with an initial rate of 2.2 × 10^-5 moles P d^-1, more than four times slower than AMP and PS, likely due to the lower reactivity of C-P bond in MP toward hydrolysis than that of O-P bond in AMP and PS (36).

We also tested the effect of Fe(II) on the photodegradation of organic phosphorus by introducing 1 mM of dissolved Fe(II) as FeCl_2, which is relevant to Archean seawater (37). We observed the change of the solution color indicating Fe(II) photooxidation and possible Fe(III) precipitation under anoxic conditions, consistent with a previous report (25), but found no significant effect on the rate of phosphate release (SI Appendix, Fig. S2). Our results are in contrast to a previous study showing that the presence of Fe(III) could promote the generation of ROS and thus organic phosphorus degradation (38), probably reflecting the less efficient generation of ROS under anoxic conditions and/or the faster photodegradation of MP compared to AMP and PS.

Fig. 1. Organic phosphorus (OP) photodegradation by UV light. (A) Chemical structures of model OP, i.e., I. AMP, II. PS, and III. MP, investigated in this study. (B) Phosphate released by OP photodegradation. Open symbols display the results of dark controls.
photodegradation of organic phosphorus than Fe$^{2+}$ photooxidation. Moreover, HCO$_3^-$ was proposed to scavenge •OH radical and slow organic phosphorus photolysis (39) (see also SI Appendix, section S3), but no significant effect was observed here (SI Appendix, Fig. S2). This suggests there was limited •OH radical formation in the experimental solutions. Finally, we performed a positive test by adding H$_2$O$_2$ to our experiments and observed very rapid photolysis of organic phosphorus (SI Appendix, Fig. S3), confirming that oxic, radical-rich conditions would favor the photolysis of organic phosphorus, consistent with previous studies (27, 40).

Implications for Archean Phosphorus Cycle and Habitability of the Early Ocean. Organic phosphorus compounds are essential in the assembly of cellular life as we know it. However, the abiotic formation of C-O-P and C-P bonds is usually endothermic and thus thermodynamically unfavorable in aqueous solutions relevant to primitive seawater chemistry (41, 42). Thus, the availability and accumulation of organic phosphorus could have been chemically challenging for the origin of life (41, 42). Previous studies have suggested a sunlight-driven, wet–dry cycling mechanism in lacustrine or coastal marine settings as an essential process for prebiotic synthesis (43–45). Several studies have also proposed meteoritic impacts as either a direct (e.g., supplying phosphonic acid) or an indirect (via providing reactive inorganic phosphorus that could readily form organic phosphorus in the presence of organic precursors) route to supply organic phosphorus to the Archean ocean (29, 31, 46). However, our experimental results strongly suggest that UV radiation would have greatly facilitated the breaking of both C-P and C-O-P bonds under anoxic conditions, thereby reducing the stability and accumulation of organic phosphorus in shallow waters or on land. Moreover, another recent study observed that UV radiation could drive the hydrolytic oxidation of reactive inorganic phosphorus, including phosphite (HPO$_4^{2-}$) and hypophosphite (H$_2$PO$_4^-$) (47), possibly reducing their accumulation for further organic phosphorolysis in surface waters on the primitive Earth. Therefore, UV radiation would potentially inhibit the synthesis and accumulation of the organic phosphorus compounds (as well as their formation bases, including reactive inorganic phosphorus) necessary for life’s emergence, unless protected by natural shielding mechanisms, e.g., through UV absorbers in the primitive atmosphere (48) or seawater (49) or by mineral adsorption (50, 51).

After life’s emergence in the late Hadean or early Archean (52–54), the decomposition of biomass would soon become the predominant source of organic phosphorus in the ocean by the middle to late Archean. As prokaryotes evolved, dissolved organic phosphorus in the ocean would have been mainly composed of simple organic phosphorus species, e.g., nucleotides and possibly phospholipids. Even in the modern ocean, dissolved organic phosphorus is primarily composed of low-molecular-weight nucleotides and phospholipids (12, 30) (see also SI Appendix, section S1). Phosphate esters (C-O-P bond) are the predominant fraction in modern seawater and among them, AMP is one major species (12). PS represents another major type of phosphate ester in modern seawater (12, 30), but probably not in the Archean (33). Thus, we used AMP as the model organic phosphorus compound to calculate phosphorus recycling fluxes via photodegradation in the photic zone of the middle to late Archean ocean. Considering the faster photodegradation rate of PS over AMP (Table 1), our calculation represents a conservative estimate of photodegradation flux if phospholipids were a major type of organic phosphorus in the Archean seawater.

Our model suggests that phosphorus recycling via organic phosphorus photodegradation relies heavily on the concentration of organic phosphorus in the photic zone (Fig. 2). Even assuming that Archean surface seawater contained 1 nM organic phosphorus [50 to 200 times less than the levels in both the coastal and open ocean seawater (30)], photodegradation could still have released 1.7 to 4.4 x 1012 moles/y of free orthophosphate (Fig. 2). This is 4 to 10 times higher than previous calculations (19), which assume that phosphorus recycling relies on the availability of oxidants. Our estimates are also much higher than the reported continental input of phosphorus in the Archean, even assuming rapid growth of land in late Archean (0.04 to 0.34 x 1012 moles/y bioavailable phosphorus) (21). Thus, the photolytic degradation of organic phosphorus could have greatly enhanced phosphorus recycling in anoxic Archean oceans and provided surplus bioavailable phosphorus for biological production, presumably easing the “phosphorus famine” (3, 21).

Table 1. Initial release rates of phosphate under all tested conditions

<table>
<thead>
<tr>
<th>Organic P</th>
<th>Optical Filter (nm)*</th>
<th>Experiment Additive</th>
<th>Initial release rate (moles phosphate/day)</th>
<th>Quantum Yield (moles phosphate/photon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>No</td>
<td>No</td>
<td>9.50 x 10^-5</td>
<td>No data</td>
</tr>
<tr>
<td>AMP</td>
<td>LP (>225)</td>
<td>No</td>
<td>1.10 x 10^-5</td>
<td>No data</td>
</tr>
<tr>
<td>AMP</td>
<td>No</td>
<td>50 mM Fe$^{2+}$</td>
<td>7.28 x 10^-5</td>
<td>No data</td>
</tr>
<tr>
<td>AMP</td>
<td>No</td>
<td>50 mM HCO$_3^-$</td>
<td>9.90 x 10^-5</td>
<td>No data</td>
</tr>
<tr>
<td>AMP</td>
<td>No</td>
<td>50 mM H$_2$O$_2$</td>
<td>4.81 x 10^-4</td>
<td>No data</td>
</tr>
<tr>
<td>AMP</td>
<td>No</td>
<td>50 mM C$_3$H$_8$O</td>
<td>7.10 x 10^-5</td>
<td>No data</td>
</tr>
<tr>
<td>AMP</td>
<td>BP (200)</td>
<td>No</td>
<td>4.16 x 10^-6</td>
<td>1.75 x 10^-3</td>
</tr>
<tr>
<td>AMP</td>
<td>BP (230)</td>
<td>No</td>
<td>5.30 x 10^-6</td>
<td>1.41 x 10^-2</td>
</tr>
<tr>
<td>AMP</td>
<td>BP (260)</td>
<td>No</td>
<td>6.00 x 10^-7</td>
<td>4.86 x 10^-4</td>
</tr>
<tr>
<td>PS</td>
<td>No</td>
<td>No</td>
<td>1.48 x 10^-4</td>
<td>No data</td>
</tr>
<tr>
<td>PS</td>
<td>BP (200)</td>
<td>No</td>
<td>2.36 x 10^-5</td>
<td>2.58 x 10^-1</td>
</tr>
<tr>
<td>PS</td>
<td>BP (230)</td>
<td>No</td>
<td>1.06 x 10^-5</td>
<td>2.81 x 10^-2</td>
</tr>
<tr>
<td>MP</td>
<td>No</td>
<td>No</td>
<td>2.20 x 10^-5</td>
<td>No data</td>
</tr>
<tr>
<td>MP</td>
<td>BP (200)</td>
<td>No</td>
<td>4.16 x 10^-6</td>
<td>1.75 x 10^-3</td>
</tr>
<tr>
<td>MP</td>
<td>BP (230)</td>
<td>No</td>
<td>2.96 x 10^-6</td>
<td>7.85 x 10^-3</td>
</tr>
</tbody>
</table>

*Filter type (LP represents long-pass filter; BP represents band pass filter) and transmission wavelength (center wavelength for BP).
The recycling flux of P via photodegradation of organic phosphorus together with that for continental supply would support a biological productivity up to $5.4 \times 10^{11} \text{ mol} \cdot \text{y}^{-1}$ in the late Archean ocean, assuming a C:P ratio of 114:1 (55). This accounts for 14% of modern marine primary production, but is higher than previous estimates (21, 56, 57). Particularly, our estimate is much higher than those reported by Ward et al. (57) (0.1% of modern marine primary production in late Archean), which concluded that Archean marine primary production was limited by the supply of electron donors before the advent of oxygenic photosynthesis. Our results confirm that the supply of P was likely not bio-limiting and that instead other parameters such as electron donors (57), nitrogen, or transition metals (7), imposed stronger constraints until the appearance of oxygenic photosynthesis. By then, rapid P recycling associated with photodegradation of organic phosphorus could have kept pace with expanding populations and the productivity of oxygenic phototrophs, and supported a rapid oxidation of the atmosphere (58). In short, there is no evidence that phosphate was ever a significant limiting nutrient for primary productivity in the Archean oceans.

Materials and Methods

Reaction Setup. Solutions were prepared in a 5% H$_2$ + 95% N$_2$ purged anaerobic chamber (Coy Laboratory Products; <0.01 ppm O$_2$) by dissolving 50 µmolal of AMP, PS, or MP in 0.5 molal solutions of NaCl. Additional experiments were also performed by separately testing effects of other major sea salts, i.e., CaCl$_2$, MgCl$_2$, MgCl$_2$·6H$_2$O (50 mmolal), MgCl$_2$·6H$_2$O (50 mmolal), FeCl$_2$·4H$_2$O (1 mmolal), and NaHCO$_3$ (10 mmolal). Moreover, H$_2$O$_2$ (1 mmolal; positive control) and isopropanol (1 mmolal; negative control) were introduced in another two runs to test the role of ROSs in OP photodegradation. Solutions were transferred to several quartz-bottomed reaction cells and sealed with butyl stoppers and aluminum crimp caps to prevent gas exchange with the open atmosphere. They were then purged with N$_2$ (99.999% purity; Airgas INC.) to remove H$_2$O in the headspace (inherited from the anaerobic chamber). Gas chromatography with a thermal conductivity detector (Model 310, SRI Instruments) was used to monitor the levels of O$_2$, H$_2$, and CH$_4$ throughout experiments.

UV Irradiation Experiments. A 450-W Hg vapor lamp (Hanovia PC451.050) in a photochemical quartz immersion well was used to irradiate the parallel samples (SI Appendix, Fig. S4). The suspensions were irradiated over 24 to 250 h. The dark controls were placed in N$_2$-purged serum bottles wrapped in aluminum foil. Various 25-mm UV band-pass (Semrock FF01-260, Andover 228FS25, 200FS10 25), and long-pass (Schott WG-225) filters were introduced to determine the photodegradation rate of organic phosphorus at specific wavelength or range. One experiment was replicated in triplicate to ensure reproducibility (Fig. 1).

Analyses of Reaction Products. Samples were collected at various times from 1 to 400 h for analyses of H$_2$ and dissolved phosphate and iron. Aliquots were removed from the reactors via syringe and stored at 8 °C prior to analysis using the molybdenum blue method for phosphate determination and the ferrozine method for dissolved iron (59).

A Thermo Scientific Orion 9863BN Micro pH Electrode was used to measure pH. The solutions maintained a pH of ~7 before and after photodegradation apart from those containing Fe which decreased to ~3.6 following irradiation.

Quantum Yield Measurements. To quantitatively link the lab-measured photoreaction rate to photon flux, three narrow band-pass filters (transmitting 200, 230, and 260-nm light) were used to determine Φ_P of photodegradation of organic phosphorus:

$$\Phi_P = \frac{v_P}{I_{\lambda} \times (1 - 10^{-\omega \lambda})},$$

where v_P and I_{λ} are the moles of PO$_4^{3-}$ produced and incident photons per unit time, respectively, and ω is the molar absorption coefficient of organic phosphorus (M$^{-1}$ cm$^{-1}$; reported in SI Appendix, Table S1). I_{λ} was measured using ferrioxalate actinometry (60). Initial rates (0 to 5 h) were used to calculate v_P value.

The denominator of Eq. 1 represents the number of absorbed photons per unit time, and thus Φ_P is independent on the concentration of organic phosphorus.

Modeling Phosphate Production by the Photolysis of Organic Phosphorus in the Photic Zone of the Archean Ocean. The rate of phosphate production by the photolysis of organic phosphorus (θ_{OP} in mole/cm3/y) was calculated using (61):

$$\theta_{\text{OP}} = 3.15 \times 10^{7} \cdot \text{s} \cdot \text{y}^{-1} \times \frac{0.5 [\text{OP}]}{6.02 \times 10^{23}} \int_{400}^{200} \phi_{\lambda} \phi_P I_{\lambda} d\lambda dz,$$

where 3.15×10^{7} converts years to seconds, 0.5 corrects diurnal variations in the incident flux of solar radiation, $[\text{OP}]$ represents molar concentration of dissolved organic phosphorus, 6.02×10^{23} is the Avogadro number, z is the penetration depth of the UV light (in meters), $F(\lambda, z)$ is the photon flux:

$$F(\lambda, z) = F_0 e^{-\kappa z},$$

where F_0 is the photon flux at Earth’s surface (23); κ accounts for the absorptivity of seawater ($\kappa = \sum e_\lambda[X_i]$; X_i is light-absorbing species); ω is the incident angle of the radiation (= 35 °C (62)). The shielding effect of dissolved Fe(II) was considered here using 0.1 mM Fe$^{2+}$ (20) and $e_{\text{Fe}^{2+}}^{\text{at}}$ from ref. 61.

Here, the wavelength of UV light (λ) was set to between 200 and 400 nm, considering shielding of light <200 nm by the CO$_2$-rich Archean atmosphere (63). As a major variant, θ_{OP} was modeled across a wide range (0.1 to 200 nM) that considering shielding of light <200 nm by the CO$_2$-rich Archean atmosphere (63).
to late Archean. However, Flament et al. (65) proposed slower continental land growth and therefore a larger area of ocean. If the latter scenario was adopted, the predicted flux of P would be larger than the presented estimates.

Data, Materials, and Software Availability. All study data are included in the article and/or SI Appendix.

ACKNOWLEDGMENTS. We thank A. Knoll and K. Wyman for helpful comments and financial support from National NSF of China (42173083), CAS Strategic Priority Research Program (XDB 41000000), CIFAR Azriel Global Scholarship, NASA Exobiology (NNX16AK02G), and the NASA Astrobiology Institute (B0NSSC18M0093).

Author affiliations: "Department of Earth and Planetary Science, Rutgers University, Piscataway, NJ 08854-8066; "Center Interdisciplinaire de Nanoscience de Marseille (UMR 7325 CNRS), Aix Marseille Université, Campus de Luminy – Case 913, Marseille Cedex 13 13288, France. "Deep Sea Exploration Laboratory/Chinese Academy of Sciences Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China; "Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08801; and "Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901.

PNAS 2023 Vol. 120 No. 30 e2307524120 https://doi.org/10.1073/pnas.2307524120 5 of 5