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ABSTRACT OF THE THESIS
Stratigraphy, Sedimentation and Basin Development of the Jacksonburg
Limestone and Martinsburg Formation, Ordovician, northern New Jersey.
by STEPHEN GARRETT POLLOCK, Ph.D.

Thesis director: Professor Raymond Murray

The Jacksonburg Limestone and Martinsburg Formation is a depo~-
sitional package. Physical stratigraphy of the Jacksonburg Limestone
is complex. Thickness of the Jacksonburg Limestone ranges from 32-245
meters and thins to the northeast.

The Martinsburg is subdivided infto a lower claystone Bushkill
Member and an upper graywacke rich Ramseyburg Member. The Bushkill
Member varies from 30-375 meters thick. The thickness variation is
dependent upon geographic variation and initial deposition of graywacke
beds. Ramseyburg Member ranges from 1320 to 1500 meters. The gray-
wackes occur as large lenses within thin bedded claystone.

Together the Jacksonburg Limestone and Martinsburg Formation
are interpreted as the f£illing of a starved basin in front of a west
facing carbonate platform. Presumably, carbonate platform deposition
began in Lower Cambrian time and continued until Lower Ordovician re-
sulfing in the Leithville Formation, Allentown Dolomite and Beekmantown
Group. By Middle Ordovician Time the remanent platform top received a
thin sequence of clastic carbonate shelf lithologies. Filling of the

basin began during this time by deposition of carbonate slope and sub-
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marine channel deposits of the Jacksonburg Limestone and non-carbonate
hemipelagic clays and submarine fans of the Martinsburg Formation.
During this phase of sedimentation large blocks of Cambro-Ordovician
Limestone broke away from the carbonate platform edge and were emplaced
by submarine sliding into the non—carbonate basin environment of the
Martinsburg Formation. By Upper Ordovician time the basin had suffi-
ciently filled so that preserved sediments were deposited in a rela-

tively shallow water shelf environment.
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INTRODUCTION

The Martinsburg Formation within New Jersey and Pennsylvania
is part of a major Middle and Upper Ordovician sedimentary basin that
extends from the Gaspe Peninsula in Quebec into the southeastern
United States. Sedimentary environments within the Martinsburg Forma-
tion and its equivalents have been interpreted as deeper water fiysch
(Enos, 1969; McBride, 1962; McIver, 1970; Van Houten, 1954) and a
shallow water shelf (Bretsky, 1969, E. J. Marcewicz, personal communi-
cation; Walker, 1970; and Willard, 1943). Also the Martinsburg and
its equivalents has been reported to have served as recipient for a
variety of allochthons or klippen in New York (Knopf, 1962; Zen, 1967;
1972b) and Pennsylvania (?latt and others, 1972; Stose, G.W., 1946)
with wildflysch-type conglomerates locally developed.

Recent studies of the Martinsburg Formation in New Jersey and

_eastern Pennsylvania have centered around stratigraphic (Drake and
Epstein, 1967) or structural problems with special emphasis on the
origi~ of slaty cleavage (Alterman,1973; Carson, 1968; Drake, 1969;
Epstein and Epstein, 1969; and Maxwell, 1962). In fennsylvania,
Cambro~Ordovician Limestone units mapped as a facies of the Martins-
burg Formation by Miller (1937a) were reinterpreted by Aldridge (1967)
as submarine slide blocks and are considered by Platt and others (1972)
as part of the Hamburg Klippe. Similar Cambro-Ordovician limestone
units were mapped within the Martinsburg outcrop belt by Bayley and
others (1914} and interpreted by them as folded remanents of a once

more regionally extensive thrust sheet.
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This paper examines the Jacksonburg Limestone and Martinsburg
Formation in northern New Jersey in terms of regional stratigraphy and
depositional environments. Special emphasis is placed on the alloch-
thonous Cambro-Ordovician limestone units within the Martinsburg out-
crop belt in terms of delineating a sedimentary or tectonic origin.
The study proposes to demonstrate that the Jacksonburg Limestone and
Martinsburg Formation is a depositional package that represents sedi-
mentation and basin filling adjacent to a west facing carbonate bank.
During the course of the study it became apparent that the Martinsburg
Formation is sufficiently varied in terms of lithology, sedimentary
structures and faunas to suggest that deposition occurred in both
shallow and deeper water environments. Stratigraphic and geographic
distribution of these elements has produced conclusions pertaining to
regional sedimentation patterns throughout Middle and Upper Ordovician

time in terms of changing depositional environments and paleogeography.
PREVIOUS WORK

The Jacksonburg Limestone, originally the Trenton Limestone of
Weller (1901) was named by Spencer and others (1908) with Jacksonburg,
New Jersey, as the type locality. The name has since been consistently
applied to the high calcium fossiliferous limestone of Middle Ordovi-
cian (Trenton) age {Xummel, 1901; Weller, 1901; Spencer and others,
1908; Bayley and others, 1914; Miller, 1937b; and Barmett, 1965).

In eastern Penmsvylvania, Miller (1937) subdivided the Jackson-
burg into a lower "cement limestone facies™ and an upper "cement rock
facies'. Miller and this study did not subdivide the Jacksonburg in

New Jersey as in Pennsylvania. In southeastern New York the Jackson-



burg equivalent, the Balmville Limestone is discussed by 0ffield
(1967). Ray and Gault (1961) discuss the stratigraphy and mineralogy
of the Jacksonburg in eastern Pennsylvania.

In New Jersey, Spencer and others (1908) first applied the
term Martinsburg to shales, slates and graywackes previously referred
to as the Hudson River Slate (Weller, 1901). Drake and Epstein (1967)
gave formation status to the Martinsburg in eastern Pennsylvania and
western New Jersey. They recognized three members (figure 2); a
lower claystone Bushkill Member, a middle graywacke rich Ramseyburg
Member, and an upper thick-bedded claystone slate Pen Argyl Member.
Summaries in changes in the status of Martinsburg stratigraphy are
given by Drake and Epstein (1947) for Pennsylvania and by Berry (1970,

1973} and Richard and Fisher (1973) and Offieid (1967) for New York.
STRATIGRAPHIC FRAMEWORK

JACKSONBURG LIMESTONE

Lithofacies of the Jacksonburg consist of wackestone, minor
packstone and grainstone, mudstone, pebble, cobble, and boulder con-
glomerate. Lithofacies distribution is variable, complex and is not
consistent with the subdivision established by Miller (1937b) in
‘eastern Pennsylvania. The general stratigraphy is a local basal pebble
conglomerate followed successively by wackestone or packstone and
calcarsous silty claystone. Where the basal conglomerate is not pre-
sent, tha base is calcareous mudstone (Spencer and others, 1908;
Miller, 1937b) or more commonly wackestone.

Cobble and boulder conglomerate horizons at the base, middle

and top of the formation are interbedded with mudstone and wackestone



and are restricted to localities east and south of Hope, New Jersey.
Conglomeratic wackestone occurs higher in the formation to the east
and west of Hope, New Jersey and in Newton, New Jersey, but is not
present at other localities higher in the section.

The Jacksonburg-Martinsburg contact is gradational throughout
the area. In the southwestern area, the Jacksonburg Limestone grades
from wackestone through calcareous, sparsely fossiliferous mudstones
into the non-calcareous claystone of the Bushkill Member of the
Martinsburg Formation. To the northeast, the transition is more abrupt
covering a shorter stratigraphic interval. The highest Jackscnburg
beds exposed consist of wackestone with 60% matrix. In the vicinity
of Hope, New Jersey, Jacksonburg wackestones interbed with thin to
medium beds (4-30 cm) of black calcareous and dolomitic claystone of
the Bushkill Member . The dolomite in these claystones is detritus
derived from Cambro-0Ordovician carbonates.

Thickness of the Jacksonburg ranges from approximately 95
meters in the southwastern area to 35 to 40 meters in the northeastern
area. Approximately 2 km southeast of Hope, New Jerszy, a maximum
thickness of 245 meters is present. The abnormally high thickness
here is sedimentary thickening. Minor secondary tectonic thickening
is also present due to faulting. Sedimentary thickening of the Jack-
sonburg section also occurs within Newton, New Jersey. Maximum thick-
ness is approximately 60 meters contrasted with the average of 35 ~ 40
meters in surrounding sreas. The abnormally thick Jacksonburg section
in these two areas contains thick massive beds of pebble, cobble and

boulder conglomerate.



MARTINSBURG FORMATION

In northern New Jersey the Martinsburg Formation is subdivided
into a lower claystone Bushkill Member and an upper graywacke-rich
Ramseyburg Member. An upper thickbedded claystone member, the Pen
Argyl equivalent, is not present having been eroded away, faulted out,
or not deposited (figure 2). Locally the Ramseyburg Member may be sub~-
divided into an informal lower unit consisting of laminated claystones
with minor graywacke, and an upper unit consisting of cycles of gray-
wacke interbedded with laminated claystone. In northeastern areas the
Ramseyburg is in its entirety more cyclic and in general has a higher
silt and sand content (figure 3). The cyclic nature, lenticular geo-
metry, and irregular geographic distribution of the graywacke intervals
in the Ramseyburg has precluded further subdivision. Average cumula-

tive thickness for the Martinsburg is between 1620 and 1710 meters.

Bushkill Member

Lithofacieé of the Bushkill Member is uniform consisting of
very fine grained claystone and slate and minor thin graywacke beds
less than 20 cm thick. Mineralogically the Bushkill contains 2M mica,
chlorite, guartz and minor albite.

Drake and Epstein (1967) placed the contact between the Bushkill
and Famseyburg Members beneath the lowest prominent (30 cm) graywacke
bed. This definition has been censistently applied. Thickness of the
Bushkill ranges from O to 375 meters. The maximum thickness is less
than that proposed by Draks and Epstedin (1967) for the Bushkill in
western New Jersey and eastern Pemnsylvania where a maximum thickness of

1200 meters is proposed. In northern New Jersey the variation in thick-
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ness is due to (1) faulting and (2) the fact that the Bushkill-Ramsey~-
burg contact is a facies contact, that varies gecgraphically.

North of Johnsonburg, New Jersey, the Jacksonburg Limestone
and the Bushkill Member are faulted out sc that the Epler Formation of
the Beekmantown Group (figure 2) and, locally, the Jacksonburg Lime-
stone are in contact with graywackes or claystone of the Ramsevburg
Member. In the vicinity of Blairstown, New Jersey, along the Portland
Fault, the Bushkill thins by faulting to the northeast. Where fully
developed the Bushkill ranges from 35 to 375 meters.

Sedimentologic variation in thickness is shown by & northwest
thickening of the Bushkill into the Martinsburg basin, and also by
thickening to the northeast and southwest of Hope, New Jersey {figure
3). Thickness variation ig due to the deposition of small, possibly
coalesing, lenticular graywacke cycles of the Ramseyburg Member, and
partially to allochthonous (submarine slides) shale and graywacke,
Cambro-Ordovician dolomite and Precambrian gneiss. Also proximity to
submarine channels of the Jacksonburg Limestcone appears to have had

some control on Bushkill thickness.

Ramseyburg Meuber

Lithofacies of the Ramseyburg Member is laminated claystone
and graywacke. The laminated claystones differ from Bushkill clay-
stones in that they appear in general to be coarser grained and more
thinly bedded (0.5 to 2.5 cm average). Mineralogically Ramseyburg and
Bushkill claystones are identical. Gravwacke lithofacies consists of
fine grained silt to wedium sand size material with variable amounts

of matrix (22-67%Z). McBride (1962) discusses the petrography in de-
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tail.

Stratigraphy and lithofacies distribution of the Ramseyburg
Member is highly complex. The ccmplexity results from local variations
in sediment types and large to medium scale allochthons positioned at
different stratigraphic levels. Folding, faulting, poor exposure and
lack of marker beds or horizouns and subsurface data have prohibited
detailed stratigraphic analysis of individual sandstone beds. In
general however, thick sand beds probably are not continuocus for great
distances. Thick, 1 meter, sand beds within graywacke cycles at
widely separated localities terminate abruptly. These pinch out or
become noticeably finer grained and thinner over distances of several
meters or tens of meters.

Graywackes are cyclically interbedded with claystone. Gray-
wacke cycles are broadly lenticular in geometry. Lenticles range in
thickness from less than 15 meters to more than 500 meters. Laterally
the thicker cycles appear to extend from approximately 2 to 7 km.
These cycles show complicated facies patterns of vertical interbedding
and lateral interfingering with claystone. Thin graywacke cycles,
thicker laterally into larger cycles, or are small individual lenses.
Graywacke cycles terminate by pinching out, grading into adjacent clay-
stone or both.

Preserved Ramseyburg thickness ranges from approximately 1320
to 1500 meters, averaging 1350-1385 meters. Variation in thickness
estimates for the Ramseyburg is the result of geographic differences
in fold style and fold intensity as well as local faulting. A thicker
section is believed preserved in the vicinity of Newton, New Jersey.

This greater preserved thickness is due to a northeast plunging syn-



11

cline and movement along the Portland Fault which passes through the

syncline core to the northwest.
ALLOCHTHONOUS SEQUENCE

Within the Martinsburg outcrop belt of northern New Jersey,
Bayley and others (1914) mapped several allochthons of Cambro-Ordovi-
cian limestone and quartzo-feldspathic gneiss. These were interpreted
by them to be remmnants of a once continuous thrust sheet folded into
a synform. Re-examination of allochthonous areas with particular em-
phasis on the Martinsburg surrounding the allochthons produced evidence
that the dolomite and gneiss are within the Martinsburg rather than
overlying it, and that much of the Martinsburg proximal to the dolomite
and gneiss is also allochthonous.

Structural data indicates allochthonous areas were folded
during regional f; folding which was accompanied by development of
slaty axial plane cleavage. Pre-fold emplaceﬁent is shown by local
folding of the allochthons into a form consistent with the regional
fold pattern, local development of slaty axizl plane cleavage in basal
portions of the dolomite blocks, and local transposition of dolomite
bedding parallel to cleavage.

Characteristics of aliochthonous Bushkill and Ramseyburg which
differentiate them from the autochthonous sequence are: (1) chaotic
discontinuous bedding where bedding terminates by abrupt gradation into
non-bedded material or planar surfaces (figure 4), (2) fold axes di-
verge in trend and plunge from regional tectonic fold axes {figure 5),
(3) folds not properly aligned with slaty axial plane cleavage cor con-

vergent fan cleavage.
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Chaotically bedded Martinsburg is a mappable unit, and is best
developedAlateral to and stratigraphically above dolomite blocks.
Martinsburg exposed below thz blocks is typically unbedded. Sand
lenses parallel to cleavage may be remnant bedding, but are probably
transposition structures. Shale blocks with thin graywacke beds or
laminae are traceable for maximum distances of approximately 10-15
meters. Bedded areas commonly grade abruptly into nonbedded shale
blocks. Termination of this type is loss of coherency of bedding and
mixing or homogenization of textural types. Chaotic Ramseyburg with
abundant graywacke beds exhibits bedding abruptly terminate by planar
surfaces such that each surface marks a small scale angular unconfor-
mity {figure 4). These surfaces are differentiated readily from tec-
tonic faults by lack of: {a) mineralization; (b) small, lenticular or
sigmoidal migeralized fractures; (¢) chloritization and (d) slicken-
sides all of which are commonly associated with tectonic faults and
fracturas., Also the attitude of slaty cleavage does not change across
the planar surfaces as it does across tectonic faults.

Folds attributed to sedimentary origin are zommon within chao-
tic blocks, Fold limhs are commonly terminated by one of the ways de-
scribed above. Fold style and orientation is not consistent with small
scale tectonic folds. The majority of tectonic folds have axial orien-
tation N 40° E to N 60° E and plunge less than 12° north or south (fi-

N
gure 5). Sedimentary folds have a wide range of axial trends and
plunges. These fold axes generally plunge more steeply than tectonic
fold axes {figure 5). Tectonic folds have a conspicucus axial plane
or convergent fan slaty cleavage, are recumbent or asymmetrical with

a steeply dipping northwest limb. Sedimentary folds in chaotic areas



Figure 5 - Wulff net projection of selected tectonic fold
axes (open circles) and sedimentary {slump) fold axes
{closed circles). Partial girdle of the tectonic fold

axes is due to f2 folding. The corientation of the sedimen-
tary fold axes does not show preferred or a partial girdle
orientation.

14
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do not show this type of cleavage or fold style (figure 4). Slaty
cleavage is present, but not as axial plane or converging fan cleav-
age. The cleavage passes through the fold in a variety of orienta-
tions.

Carbonate allochthons within chaotically bedded Martinsburg
are identified as Late Cambrian Allentown Dolomite and, to a much
lesser extent, Lower Ordovician Rickenback Dolomite (figure 2, columns
4 and 5). Sumﬁaries of autochthonous Allentown Dolomite stratigraphy
and petrography are given in Drake (1965, 1969) and Zadnik (1960).
Allochthons identified as Allentown are composed of light medium gray
to dark medium gray, fine to coarsely grained dolomite Qith local
sandy dolomite and dolomitic shale intervals. Oolite and stromatolite
beds are abundant in most exposures. Rickenback Dolomite occurs in
the twc largest allochthons. Rickenback lithology consists of medium
bedded coarse crystalline dolomite with thin, discontinuous dark gray
chert lenses.

Two small poorly exposed and weathered bodies of quartzofeld-
spathic gneiss constitute the third formation in the allochthonous se-
quence. The rocks are massive, and foliation is poor or absent. The
gneisses are equigranular and are composed of plagioclase (oligoclase),
quartz and biotite, in decreasing order of abundance.

Four individual allochthonous areas are indicated in figure 1.
The allochthons are irregular in thickness and lateral extent, are
widely distributed geographically, and occur at variocus stratigraphic
levels. This is due to variations in original geometry, size, strati-
graphic position of emplacement, erosional uncovering and preservation.

Geometry of the allochthons is broadly lenticular. Strati-
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graphic thickness is variable within individual allochthons. For
example within the Greendell - Johnsonburg area thickness of the
Allentown Dolomite varies from approximately 120 to 300 meters, and
near Hope, New Jersey, thickness of the Allentown - Rickenback sequence
ranges from 25 to 450 meters. Similarly lateral extent of the alloch-
thonous areas is variable. The largest allochthon, north of Hope, New
Jersey, is approximately 11 km in length, but the smallest allochton,
northeast of Newton, New Jersey, is approximately 2.2 km long.

Position of emplacement of the allochthons is also wvariable.

In general they are emplaced within the lower portion of the Martins-
burg section. The allochthons near Hope, New Jersey, and Newton, New
Jersey, locally transect, or approximately coincide with, the Bushkill-
Ramseyburg contact.

Pretectonic folding of the Bushkill and Ramseyburg members is
also variable. Minor pretectonic folding occurs in association with
the carbonate allochthons in the Greendell — Johmsonburg area, and
extensive pretectonic folding occurs in association with the carbonate
allochthons near Hope, New Jersey and Newton, New Jersey.

Pretectonic slumping and sedimentary folding of the Martins-
burg accompanied by incorporation of Allentown and Rickenback Dolomite
and quartzo-feldspathic gneiss within the Martinsburg are best explained
as having been emplaced by submarine sliding within the Martinsburg de-
positional basin. As indicated in the foregoing discussion large dole-
mite blocks are positioned at different stratigraphic levels. Nowhere
can it be conclusively demonstrated that one slide block stratigra-
phically overlies another, but rather these appear positioned at dif-

ferent stratigraphic levels approximately parallel to the strike of



17

the Martinsburg outcrop belt. As to whether slide emplacement occurred
as different events at different time intervals, or as one event over

a closely spaced time interval will probably never be conclusively de-
monstrated. Reasons for this are variations in magnitude of the
slides, complex facies relationships between Bushkill and Ramseyburg
Members, and variation in lithofacies patterns within the Ramseyburg.
Also, lack of adequate biostratigraphic indicators make determination
difficult.

Submarine sliding, slumping and emplacement of the Allentown,
Rickenback, and gneiss blocks occurred prior to gravity tectonic nappe
\development and later shearing and thrusting through the nappe core as
discussed by Drake (1969). The later thrusting and shearing through
the nappe core emplaced Precambrian gneiss onto Lower Paleozoic carbo-
nates to the south of the study area (Drake, 1969).

The previous discussion considers small blocks of quartzo-
feldspathic gneiss emplaced within the Martinsburg basin by submarine
sliding. It should be pointed out, however, that the physical evi-
dence for such a conclusion is poor. The conclusion is based upon the
proximal location of the gneiss blocks to areas of slumped Martinsburg
and slide blocks of Allentown Dolomite (figure 1). Slumped Martinsburg
occurs stratigraphically below and above the gneiss blocks, however,
contacts demonstrating emplacement by submarine sliding are lacking.
Also, it cannot be demonstrated that submarine channels actually cut
into Precambrian basement or that Precambrian basement was exposed on
the slopes of the Martinsburg basin. An alternative origin for the
gneiss blocks is that they were tectonically emplaced during thrusting

through the nappe core. The gneiss blocks then would overlie the
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Martinsburg Formation and would be remanents or outliers of a more
extensive Precambrian thrust sheet.

Drake (1969) summarizes the present knowledge of nappe struc-
tures in eastern Pennsylvania and western New Jersey. He presumes the
Martinsburg and older rocks to be part of a large Precambrian cored
nappe (Musconetcong Nappe), with the Martinsburg on the crest and brow
of the structure. The Allentown and Rickenback Dolomite allochthons,
here interpreted as large submarine slide blocks, are also presumed to
be on the crest and brow of the nappe.

This suggests at least two episodes of allochthon emplacement.
The first occurred by submarine sliding, the second by gravity tec-
tonie emplacement of the Musconetcong Nappe, and later shearing and
thrusting through the nappe core. Zen (1967, 1968, 1972a,b), Bird
(1969), Bird and Dewey (1970) have produced similar evidence for two

episodes of allochthon emplacement in western New England.

»»»»»

SEDIMENTOLOGY

The sedimentology is presented as a bipartite framework of (1)
the depositional environments and (2) the origin and evclution of the
Martinsburg depositional trough. Discussion of depositional environ-
ments is restricted to the Jacksonburg Limestone and Martinsburg
vormation. Integrated summaries of depositional environments which
gonsslidate current ideas and reinterpret the origin and evolution of
the Martinsburg basin in New Jersey and Pennsylvania are discussed in
the second section.

The Jacksonburg Limestone, though generally thin, represents

a spectrum of depositional environments critical to the understanding
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of Martinsburg sedimentation. Deposition of grainstone, packstone,
wackestone, muds;one and conglomerate occurred on a carbonate shelf,
slope and submarine valley environments whereas graywackes, claystones
and submarine slides of the Martinsburg Formation occurred in an asso-
ciation of non—-carbonate base-of-slope and basin environments. Figure
6 diagramatically shows the interpreted depositional setting of the

Jacksonburg Limestone and Martinsburg Formation.

DEPOSITIONAL ENVIRONMENTS
Carbonate Shelf - Slope

The carbonate shelf environment is characterized by medium to
thick massive beds of relatively clean, sand size skeletal grainstome,
packstone and minor detrital grainstone and packstone. More skelefal
debris is present than in succeeding environments. Faunal abundance
and diversity is usually high. Major taxa are listed in table 1.
Oolites, algal and algal coated grains are not present. Differential
‘winnowing has abraded and reworked skeletal grains and has variably
femoved fines.

This environment is local, being developed best in southwestern
sections, and notrecognizédin northeastern sections. This suggests a
regional, or perhaps local variation in paleogeography, paleosubmarine
topography and depositional slope. It cannot be demonstrated presently
that lithologies interpreted as carbonate shelf are horizontal equiva-
lents to carbonate slope, mor can a transition between the two environ-
ments be demonstrated. Alternatively the lithologies described here
may be part of the carbonate slope, having originated in a neritic

shelf and subsequently transported over the shelf edge onto the basin

1
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slope.

The carbonate slope is characterized by wackestones, pebbly
wackestone and minor calcareous mudstone deposited below storm wave
base. Wackestones contain from 40% to 70% recrystallized skeletal
debris’and sand to silt size allochems of probable skeletal debris.
Terrigenous grains comprise less than five percent of the rock. Faunas
are diverse and similar to those of the shelf. Faunal abundances are
extremely variable and much less than the shelf environment.

X-ray diffractometer patterns of wackestone indicate calcite,
quartz and chlorite to be the major constituents. Beds are generally
homogenous, massive to weakly graded and range from 0.1 to more than
2 meters thick.

Pebbly wackestones are characterized by ellipsoidal to sub-
spherical, usually well rounded dolomite pebbles, presumably derived
from the Beekmantown Group. Pebble abundance is highly variable and
ranges from several pebbles per bed to pebble conglomerate. Pebbles
were presumably derived from exposures in a channel, upslope or shelf
edge envivonment. Pebbly wackestones occur at different stratigraphic
levels through out the formation, but are mostly located proximal to
cobble and boulder conglomerates. Pebbly wackestones of the Jackson-
burg Limestone are interpreted as carbonate equivalents of pebbly mud-
stones as described by Crowell (1957), Stanley (1969) and Stanley and
Unrug (1972). General agreement currently exists that pebbly mudstone
deposits are initiated by gravity-driven subaqueous debris or grain
flows. Middleton and Hampton (1973), Hampton (1972), Andreson and
Bjerrum (1967), Stanley and Unrug (1972) and Walker and Mutti (1973)

consider pebbly mudstone a key indicator of a slope enviromment.
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Carbonate mudstones of the Jacksonburg Limestone are consid-
ered downslope, base-of-slope or basin margin accumulations. Physical
stratigraphy indicates they have locally veneered Beekmantown doio-
mites or Jacksonburg wackestone or pebbly wackestonme. Locally they

grade or interfinger into the non-carbonate Bushkill claystone.

Submarine Channel

An excellent summary listing criteria for interpretation of
ancient deep sea channel deposits is given by Whitaker (1974). Appli~-
cable criteria for interpretation of Jacksonburg submarine channels as
listed by Whitaker include comparable size, geometry, position rela-
tive to shallower and deeper water deposits and lithology.

Outcrop patterns for this enviromment of the Jacksonburg Lime—
stone indicate a channel morphology, where chamnel fill consists of
rounded to subangular pebbles, cobbles and boulders of fine to coarsely
crystalline laminated Beekmantown dolomite and chert. The conglomer-
ates are clast supported, have a carbonate silt to coarse sand matrix,
rare skeletal material and occur in beds from 3 to 15 meters thick
(table 1).

The Jacksonburg Limestone conglomerates may be subdivided into
two units: (a) those lacking recognizable fabric, imbrication or bed-
ding and (b) those with slight normal grading overlain by crude paral-
lel lamination or incipient wackestone flaser beds 1 to 4 cm thick and
up to 1 meter in length, and irregular internal erosion surfaces. A
northerly directed paleoslope is indicated by decreases in average
clast size and angularity in that direction. Distance of traamsport for

the boulders need not have been large. Direct channeling and rework-
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ing o} the paleosolution breccia (Marckewicz, 1974) of the Epler Forma-
tion (figure 2) indicates in situ formation for at least some of the
channel fill, whereas overall outcrop distribution of cobble and
boulder conglomerates suggests a minimum horizontal transport of 2 km.
Submarine channel width near Hope, New Jersey appears to be approxima-
tely 3 km, Downcutting and channel fill within the Epler Formation is
interpreted as a submarine canyon whereas channel conglomerates inter-
bedded with dolomitic claystone of the Bushkill is interpreted as upper
fan valley. Fan valley fill is inferred to be continuous with outcrops

interpreted as submarine canyon.

Base-of-Slope

Martinsburg base-of-slope environment is characterized chiefly
by deposition of autochthonous Bushkill claystone and allochthonous
submarine slides of Allentown and Rickenback Dolomite quartzo-feld-
spathic gneiss and slumped claystones and graywackes (table 2). Lo-
cally submarine channels of the Jacksonburg have dissected the base-
of-slope or rise apron. Levee deposits of the Bushkill and upper sub-
marine fan deposits of the Ramseyburg are present. This environment
oﬁerlaps into the basin where lithofacies of middle and lower submarine
fans and hemipelagites dominate.

Autochthonous base-of-slope deposits are interpreted as dark
to medium gray very fine grained, thin to medium massive beds of clay-
stone slate, with uncommon very thin .laminae of carbonaceous and silt
size detritus. Secondary pyrite locally accompanies the lamina.

In environments analégous to the one proposed for the

Martinsburg base-of-slope submarine slides and slumps are common.
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Resedimentation of shallow water limestones as debris flows or sub-
marine slides and incorporation in basinal carbonates or pelites are
considered by Mountjoy and others (1972) as worldwide indicators of
reef complexes, carbonate banks or shelf margins. Mountjoy and others
consider bedded megabreccias incorporated in marine shales or argilla-
ceous limestones criteria for identifying the carbonate bank or shelf
margin environment. Such criteria has been successfully applied in
identifying this environment in the Pennsylvanian and Permian of west
Texas (Rigby, 1958; Ray and Stehli, 1962; Newell and others, 1953; =and
Tyrrell, 1969), the Jurassic Alpine of Europe (Garrison and Fisher,
1969), the Devonian of western Canada (Mountjoy and others 1972;
Hopkins 1971) the Cretaceous of Mexico (Enos, 1974) the contemporary
Bahama Platform {(Andrews and others, 1970) and the Cambro-Ordovician
of the Appalachians (Rodgers, 1968, 1970; Palmer, 1973; Taylor, 1973;
and Swett and Smit, 1972).

The submarine slides discussed in the previous section are in~
terpreted to have been deposited in the lower slope, base-of-slope
environment. Because of the direct involvement and original shallow
water deposition of the Allentown Dolomite and the previous summary,
the slope is interpreted as the edge of a carbonate bank. This type of
margin is consistent with current thinking for the Cambro-Ordovician
continental margin of the Appalachians from Alabama to New Foundland
(Rodgers, 1968, 1970). The major difference is that the carbonate bank
appears west facing rather than east facing as described by previous
authors. This recognition suggest an off shore bank for this part of
the Appalachians. This will be discussed in greater detail in the

following section.
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The slides with incorporated blocks of Allentown and Ricken-
back Dolomite near Hope, New Jersey and Newton, New Jersey are situated
proximal to submarine channel lithofacies of the Jacksonburg Limestone.
These two slides have produced slumping and sedimentary folding of
Bushkill claystones and Ramseyburg graywackes. The conclusion that
these slides were genetically associated with submarine channels is
tem@ting. The slides near Johnsonburg, New Jersey and Greendell,

New Jersey do not appear to be associated with submarine channel litho-
logies. Slumping and sedimentary folding of the Martinsburg litho-
facies present at this slide area is minimal compared to those near
Hope, New Jersey and Newton, New Jersey. The Johnsonburg ~ Greendell
slides may have been generated as rock falls or slides on a relatively

steep margin and need not have been associated with submarine channels.

Submarine Fans

Lithofacies of the Martinsburg interpreted as submarine fan
deposits consist of graywacke cycles summarized in the preceding sec-
tion. Martinsburg fan deposits are small by comparison to contemporary
fans. This is considered to be a reflection of the relatively narrow
restricted basin in which they were deposited.

Fan deposits are recognized primarily by lenticular, over-
lapping graywacke cycles with claystone interbeds, lack of regional
stratigraphic correlation, and rapid lateral changes in bedding thick-
nesses and Bouma sequences. Sedimentary structures and other physical
characteristics are summarized in table 3. Sequences recognized
within the Martinsburg generally conform to the characteristics of

upper, middle and lower or interchannel fan deposits. Actual assign-
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ment to a subenvironment is problematical and interpretation is
essentially'congruent with the base-of-slope and basin environment.

The upper fan environment comnsists of previously described
submarine channel fill of the Jacksonburg, attributed to fan valley
origin and fan valley levees. Levee deposits are characterized by
very thin, parallel laminated detrital dolomitiec silt and claystone
and thin bioclastic limestone of the Bushkill. These are proximal to
Jacksonburg channel conglomerates. Bioclastic limestone beds are com-
posed of silt to sand size skeletal and detrital dolomite grains.
Typical structures include the Bouma a and ab interval. Sole markings
are uncommon. These beds were probably derived and deposited by tur—
bidity currents flowing and overspilling from the upper fan valley.
Levee deposits grade laterally into thicker bedded non-carbonate Bush-
kill claystone of the base-of-slope environment.

Overbank turbidite sands are rare indicating the associated
channels were probably of sufficient depth to contain the volume of
material brought downslepe or that overbank flows were of sufficient
competence that minimal deposition occurred. This conclusion tends to
be supported in a contemporary levee environment as described by
Shepard and others (1969) and Shepard and Einsley (1962) and Piper
(1970) who in an extensive survey of natural levees of the La Jolla
fan valley noted that textural layer variations appear to be functions
of chamnel wall height and position relative to the fan valley. Those
levees lacking coarse sand layers were associated with high (55 m)
valley wall heights whereas thicker sand layers occur along the outer
part of the fan valley.

Middle fan deposits are characterized by medium to thick beds
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of firmly indurated very fine to medium grained sand commonly having
calcite cement and matrix less than 35%. Lower bedding éurfaces are
sharp, either loaded into underlying claystones, and showing flute or
groove casts, or planar and even with parting lineation. Ripped up
shale clasts are locally present in the basal portion of the bed.
Complete Bouma Sequences are present, but on the whole are uncommon.
Partial Bouma sequences consisting of ae, abe, ace, be, or bce are
abundant. The a intervals are usually poorly graded or massive.
Actual grading is from medium or fine grained sand to very fine grained
sand or silt. ’The ¢ interval consists of ripple cross lamination,
cross bedding and convolute bedding. Climbing ripples are rare. The
thickest beds may have trough cross bed set thickness to 45 em. and

;
widths to 10 m. Single convoluted beds approach 20 cm. The e interval
is thin not exceeding 10 cm.

Lower fan deposits are characteristically thinner bedded, grain
sizes smaller and matrix content higher than middle fan graywackes
(table 3). A bede Bouma sequence is almost universal. The Bouma a
interval is markedly absent. The ¢ interval consists of ripple cross
lamination, climbing ripples and small convolutions. Ripple foresets
are commonly oversteepened.

The final unit of fan graywackes occurs in thin to thick beds
of silt and very fine grained sand. These units are characterized by
the Bouma cde sequence:g The ¢ interval has abundant convolute, over-
steepened ripple cross lamination, and climbing ripple lamination.

The de interval is usually very thin, commenly pinches and swells,
and is not persistent for distances of more than a few meters. Pre-

cise interpretation is problematical, however, they occur stratigra-
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phically below and lateral to graywackes of uppef, middle and lower
fan deposits. Deposition may have occurred in a lower fan, inter-

channel or levee environment.

Hemipelagic Sediments

This environment consists of laminated claystones, and forms
the bulk of the Martinsburg lithofacies. The claystones are typically
dark gray to dark medium gray claystone with abundant varve-like black
parallel laminations. The black laminae are composed of carbonaceous
material, silt and very find grained sand. Maximum lamination thick-
ness is 1.5 cm. Laminae are abundant, ranging from 30 to more than 100
per meter. Non-carbonaceous claystone interbeds are massive, contain
less than 37 detrital silt and sand, and range from 1 to 8 cm rhick.
These units lack sedimentary structures. Presumably the material was
deposited from suspension.

Within this environment are thin discontinuous beds of well
sorted quartz silt and minor graywacke. These beds pinch and swell
and are rarely continuous for more than three meters. Bouma sequences
are commonly a massive or graded a interval followed rarely by b, ¢,
or bc intervals. The units are characterized by sharp bases and tops.
Maximum thickness is 2.5 cm. These units are interpreted as possible

contourites or distal turbidites.

ORIGIN AND DEVELOPMENT OF THE MARTINSBURG BASIN

This portion of the paper interprets the development of the
Martinsburg basin and the changes in depositional environments through
time. This involves considerable synthesis and interpretation of

stratigraphic and structural data from literature sources, most of
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which has been diagramatically incorporated in figure 7.

Pre-Middle Ordovician sedimentation in the central and northern
Aﬁpalachians has been generally described as a southeast thickening
wedge of miogeosynclinal Late Precambrian and Cambrian quartz sand-
stones, overlain by Cambro - Ordovician dolomites and limestone (Bird
and Dewey, 1970; Colton, 1970; Dietz and Holden, 1967; Rodgers, 1968).
Dewey considers this framework to have developed during spreading of
a proto - Atlantic Ocean from Late Precambrian to Lower Ordovician time.

The sedimentological evidence presented in the pPreceding sec~
tions suggests that in the vicinity of northern New Jersey and possibly
southeastern New York and eastern Pennsylvania an offshore carbonate
bank existed, producing a long standing starved basin (Martinsburg
basin). In northern New Jersey carbonate bank deposition comnenced
with the Lower Cambrian Leithsville Formation and continued into upper
Lower Ordovician, with deposition of the Beekmantown Group (figure 2).

In northern New Jersey and eastern Pennsylvania lithofacies
distribution of the Jacksonburg Limestone and Martinsburg Formation
suggest that these two formations represent progressive and continuous
infilling of a starved basin from middle Trenton to Maysville time.
Middle Ordovician basin sedimentation is characterized by rapid facies
change across a bank margin. The Jacksonburg is a thin sequence of
slope lithofacies wunconformable on the relatively steep carbonate bank
of the eastern basin margin,

Parallel to this margin, at or near the base~of-slope, large
scale submarine slides have invoived resedimentation of Cambro-
Ordovician dolomite and limestone. The dolomite and limestone blocks

discussed in preceding sections exhibit criteria which indicate origi-
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nal deposition in shallow water. The occurrence of dolomite and
limestoneAblocks within Martinsburg lithofacies is geographically
widespread. Miller (1937a) and Aldridge (1967) have identified Allen-
town Dolomite enclosed within the Martinsburg in eastern Pennsylvania.
Dyson (1967) reports calcareous sandstone, grainstone and ocolitic
grainstone from a middle subdivision of the Martinsburg from west of
the Susquehanna River in Pennsylvania. Also, Knopf (1962) demon-
strated that blocks of Cambrian and Ordovician limestone are enclosed
in Middle Ordovician shales in southeastern New York. Aldridge (1967)
considers a pretectonic submarine sliide emplacement of the limestone
within eastern Penmnsylvania. It is probable and consistent within the
ideas presented that the dolomite and limestone within the Martinsburg
of central Pennsylvania and southeastern New York also originated by
submarine sliﬁe emplacement.‘ It is suggested that the distribution of
large scale bedded dolomite and limestone blocks within the Martinsburg
may prove to be indicators of the geographic extent of the offshore
carbonate bank.

The western basin margin is not characterized by a steep car-
bonate bank, but rather by apparently continuous sedimentation and
facies changes from Lower Cambrian through Upper Ordovician time
(figure 2 & 7). Facies changes suggest an overall westerly migracion
of sedimentary enviromments. Lower and Middle Ordovician carbonate
shelf deposits were replaced by westerly migrating lower Upper Ordovi-
cian Reedsville Shale shelf sediments (Wagner, 1966; Thompson, 19723,
and culminated with deposition of the Upper Ordovician molasse of
the Bald Fagle Sandstone and Juniata Formation.

To the southeast of the carbonate bank margin in the vicinity
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of Jutland and Ralston, New Jersey, a relatively thin clastic carbonate
facies overlies the Beekmantown Group and locally the Jacksonburg
Limestone. F. J. Marckewicz (unpub. data) and Minard (1959) consider
characteristic lithologies to be red, green, yellow and brown shales
and siltstones, quartz - feldspar conglomerates, glauconitic sand-
stone and conglomerate, and limestone including oolitic limestone.
Conglomerate units contain gneiss and limestone pebbles and are pre-
sumed to have been locally derived from exposed Precambrian terrain.
Minard estimates the preserved section near Ralston to be approximately
600 meters and F. J. Marckewicz estimates preserved section mear Jutland
to be 750 meters. These sections are relatively thin compared to the
main Martinsburg outcrop belt discussed in this report and by Drake and
Epstein (1967). Marckewicz (personal communication) presumes the
lithologies at Jutland to have been deposited in a shallow water shelf
environment. The lithologies and depositional environments are similar
to those reported by Walker (1970) for the Martinsburg in Virginia.
Graptolite faunas from the Jutland sequence indicate both an
early and middle Ordovician age. The early Ordovician faunas corre-
late with the Deepkill Shale (Drake, 1969; U.S.G.S. Research, 1964,
P. A-83; and Zen, 1972a) and the Poultney Slate of New York (Pessi-
torities, and others, 1974). They are reported to overlie younger,
Middle Ordovician faunas which tentatively correlate with the Norman-
skill Formation of New York. The present allochthonous structural
position of these faunas has prompted interpretation and correlation
with the Taconic allochthon of New York (Drake, 1969, Pessitoritis
and others, 1974 and Zen, 1970). Drake (1969) does not consider the

origin of the allochthon of the Jutland sequence as a submarine gravity
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slide because of a lack of flysch lithologies. It is not the object
to identify the mode of emplacement. The importance is, that there
exists to the southeast of the main Martinsburg outcrop belt a rela-
tively thin sequence of rocks of equivalent age that were deposited
within a depositional environment that markedly differs from the depo-
sitional enviromment of the main Martinsburg outcrop belt. From this
it can be inferred that a lateral transition of sedimentary environ-
ments existed within the early and Middle Ordovician. This transition
is envisioned as a change in environment from a carbonate bank to a
starved basin. A thin sequence of shelf lithologies was deposited on
the remnant Beekmantown carbonate bank. Northwesterly across the bank
edge, a thin sequence of slope lithologies, large submarine channels,
and a thick package of basin fill sediments including submarine fans
and hemipelagic clays reflects the transition to a starved basin,
Martinsburg sedimentation culminated in the Upper Ordovician
with deposition of the Reedsville Shale (Eden - Maysville age) shelf
environment (Thompson, 1972) in central Pennsylvania and the Schohary
Ridge sandstone beds (middle Eden age) of the Martinsburg in easte£n
Pennsylvania (Platt, 1972). Bretsky (1969) and Willard (1943) consider
brachiopod faunas of the Schohary Ridge to represent an inner sublitto-
ral quiet water shelf environment. McBride (1962) considers the
Schohary Ridge sandstone beds to have been deposited under shallower
water conditions and closer to the course area than other Martinsburg
graywackes. In addition to representing a lateral transition from a
southeasterly shelf environment of the Jutland sequence northwesterly
into a basin enviromment, the Martinsburg appears to represent basin

shallowing through time from middle Trenton deeper water flysch to a




Maysville - Eden shallow water shelf.
DISCUSSION

The origin of the Martinsburg depositional basin as a long
standing starved basin adjacent to a build up of shallow water cérb&-
nates is an actualistic concept of sedimentary basin origin. Modern
and ancient analogs of carbonate bank to basin transitions are common
within the literature, and selected examples have previously been
cited. |

The concept of this type of origin for the Martinsburg depo-
sitional basin provides an alternative to the hypothesis of basin
origin as expressed by Bird and Dewey (1970) and Dietz and Holden
(1974). These authors regard the Middle Ordovician flysch basin of
the Taconic region to be the result of sagging of the miogeosyncline,
The sagging was allegedly generated in \upper Lower Ordovician time by
a proto Atlantic plate underthrusting a protc North American plate
(Taconic Orogeny).

Lochman (1956) and Rodgers (1968) suggested the possibility of
an offshore carbonate buildup in eastern New York and western Vermont.
Zen (1961, 1967, 1968, 1972b) has suggested that the sequence consid-
ered by Lochman as a probable basinal pelite sequence between two car-
bonate margins is actually part of the Taconic allochthon. The orig-
inal depositional site of the pelites was to the east of carbonate
deposition and has been transported westerly during the Taconic Oro-
geny. The present site of the allochthonous sequence is within the
Middle Ordovician flysch basin (Martinsburg - Normanskill exogeosyn-

cline). Similarly Rodgers (1968) accepts an allochthonous origin for

37
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the pelitic units that surround probable shallow water carbonates.

In the structurally complex terrains of western New England
and the north central Appalachians conceptual sedimentologic models
need to be generated in order to enhance the knowledge and development
of Paleozoic plate motions, the nature and relative position in time
and space of Cambro-Ordovician basin margins. A direct consequence of
these models would be a more detailed paleogeography encompassing the
nature and timing of paleoslope reversal from an easterly paleoslope
in Cambrian and Lower Ordovician to a westerly paleoslope in Middle

and Upper Ordovician.
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