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Palynological analyses were made on 200 samples of the
Kirkwood Formation from 7 wells and 3 outcrop localities to
determine the envircnments of deposition and climatic
conditions that prevailed during its deposition,

The-Kirkwood Formation consists of three surface
members: the Asbury Park, Grenloch Sand and Alloway Clay,
Five subsurface phases, identified and described in this
study are correlated with the Early Miocene Tampa and
Hawthorn Formations of South Carolina, Georgia, and Florida,
and the Middle Mioccene Calvert, Choptank and St. Marys
Formations of Maryland, Delaware and Virginia, The Asbury
Park, Grenloch Sand andyéllcway Clay Menmbers are correlated
with the subsurface Calvert Phase on the basis of their
palynological assemblages,

Paleobathymetric interpretations of the surface an
subsurface facies of the ¥irkwood Formation are made on the
basis of their pollen, s re, dinoflagellate, diatom,
siliccflagellate and radiolarian assemblages, These assen-
blages indicate nearshore environments of deposition for the
Asbury Park, Grenloch Sand and Alloway Clay Members and
transgressive and regressive sequences in the Tampa, Hawthocrn,
Calvert andkSt. Marys Phases,

Palecclimatic interpretations, made on the basis of

Pinus/Picea ratics and changes in the recional microflora

indicate that the Asbury Park, Grenloch Sand and Alloway Clay

ks
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were deposited during a period of climatic deterioraticn from

subtropical to temperate conditions, A period of climatic
deterioration from subtropical to temperate conditions is
indicated to have taken place during the depositien of the
Tampa, Hawthorn and lower portion of the Calvert Phase, A
period of climatic amelioration is indicated during the
deposition of the upper part of the Calvert Phase and
throughout the deposition of the Choptank Phase, 2 second
period of climatic deterioration is indicated to have taken

place during the deposition of the St, Marys Phase,
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PREVIOUS PALEOENVIRONMENTAL STUDIES

Paleoenvironmental interpretations of the surface
samples of the Kirkwood Formation have been made by several
authors on the basis of palecontolcgical, sedimentolcogical
and mineralcgical studies,

Isphording and Lodding (1970 and 1973) determined the
kaclinite, illite and montmorillonite content of the Asbury
Park Member and concluded that it was deposited in transitional
marine environments such as marshes, lagoons or estuaries,

Richards and Harbison ({1942} studied the molluscan
faunas of the Shiloh Marl facies of the Alloway Clay Member
and placed it in the middle neritic environment of deposition,

Isphording and Lodding (1973) reported that the Macro-
kaolinite Zéne of the Alloway Clay was deposited in either a
lagoon, swamp or estuary that received large amounts of
runoff,

Paleoclimatic interpretations of the Kirkwood Formation
have been reported by Isphording (1970) and Isphording and
Lodding (1973). They reported that the surface members of
the Kirkwood Formation were deposited under warm, moist
climatic conditions, Their interpretations were based on
heavy mineral, light mineral and clay mineral suites,

Prior to the present study, paleobathymetric and paleo-

climatic interpretations had not been reported on the

4
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alternating =zands lays of the Kirkwood Formation in the
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subsurface,



paleonvironmental interpretations of the Kirkwood
Formation in the present study are made on the basis of
microfossils recovered from 200 samples from 7 wells and 3
outcrop localities, Included in these assemblages are pollen,
spores, silicoflagellates, radioclaria, dinoflagellate cysts,
diatoms and foraminiferal test linings,

Paleobathymetric interpretations are based on spore/
dinoflagellate‘ratios as well as relative fregquency distri-
butions of continental and marine palynomorphs, In general,
spore/dinoflagellate ratios decrease from transitional to
nearshore and offshore deposits (Dunay 1969).

Previous palynological studies of other Tertiary
formations of North America are limited in that their
assemblages are often exclusively marine or continental,
Continental assemblages are limited in that they provide short
term discontinuous records of the vegetative history of the
area. These assemblages often represent the flora of a
limited area in the immediate area of the deposit (Groot and
Groot 1966). Thus it is difficult to ascertain long term
climatic fluctuations from these assemblages,

An additional problem has been the correlation of
previously described, isolated palynological assemblages,

The latitudinal zonation of the tundra, boreal, mixed
deciducus and deciduous plant communities across North America
is well documented {Potzger and Otto 1943, Goodlet 1854,
Graham 1963, Davis 1969 and Elsik 1969), Because of this

iatitudinal zonation it is virtually impossible to correlate



the continental Miocene deposits of British Columbia as
reported by Piel (1969) for example with those of Louisiana
as reported by Elsik (1969) on the basis of palynological
assemblages alone,

Exclusively marine palynological assemblages are limited

in that the asaccate paleoclimatical indicators that appear

in abundance in continental assemblages are often rare to
absent in marine assemblages {(Dunay 1969},

Because of the absence of asaccate grains in offshore
assemblages, paleoclimatic interpretations should be made on
the basis of the relative frequencies of arboreal forms that
produce bisaccéte grains and whose distributions in modern
floras are controlled by climatoclogical factors, Paleo-
climatic interpretations in this study are based on Pinus/
Picea ratios as well as overall changes in the regional
floras.,

Modern species of Pinus are included in the floras of
many regions throughout North America (Munn 1938, Braun 1950,
Fernald 1950 and Collingwood and Brush 1964), Associated
forms, including Taxus and Taxodium indicate that the species
of Pinus that are present in palynological assermblages of the
Kirkwood Formation probably had climatic tolerances and

ecologic requirements similar to modern species of Pinus that

are now included in the native floras along the Gulf Coastal
plain and the southern portion of the Atlantic Coastal Plain,

These forms include Pinus echinats Miller, Pinus palustris

Miller, Pinus ellioti Engelm, Pinus taede Linneaus, Pinus




labra

serotina Michaux, Pinus virginia Miller and Pinus
O ST AT SO AT D

b 1%

Walter (Fernald 1950 and Collingwood and Brush 1964),

Modern species of Picea closely follow the 10°C average
July isotherm on their northern boundaries and the 23°C
isotherm on their southern boundaries (Wolfe and Leopold

1967), Picea rubens Sargent and Picea mariana (Miller) are

major elements of the modern floras from northern New England
to the Yukon territory (Collingwood and Brush 1964), Pollen
grains of these species very closely resemble the Picea
grains that are encountered in palynological assemblages of
the Kirkwood Formation., Other occurences of Picea in the
modern floras of North America include the appearances of

Picea sitchensis (Bongard) Carriere and Picea breweriana

Watson in the modern flora of the Coastal Ranges from northern

California to Alaska and Picea pungens Engelmann and Picea

engelmanni Perry on the higher slopes of the Northern Rockies

(Munn 1938, Braun 1950, Fernald 1950 and Collingwood and
Brush 1964},

Increasing Pinus/Picea ratios in Quaternary floras

indicate warming conditions., Decreasing Pinus/Picea ratios

indicate cooling conditions (Davis 1967).

The Kirkwood Formation consists of four alternating
marine and tefrestrial facies in the subsurface, Widely
spaced sections are correlated with each other on the basis
of their palynological assemblages, Thus a continuous
regional palecenvironmental analysis may be made from sémgies

of +the Rirkwood Formation,
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STRATIGRAPHY OF THE KIRKWOOD FORMATION

The Kirkwood Formation outcrops in a northeast to
southwest trending belt on the New Jersey Coastal Plain, The
formation dips 10 to 25 feet per mile below the overlying
Cohansey Formation (Barksdale 1958), The Kirkwood Formation
uncanfoxm@bly overlies the Shark River and Manasguan Form-
ations (Eocene) (Richards 1945 and Owens and Sohl 1973), The
maximum outcrop thickness is 100 feet. The formation thickens
to 790 feet in the subsurface at Atlantic City (Barksdale
1958) .,

The Kirkwood consists of three members, the Asbury Park,
Grenloch Sand and Alloway Clay.

The Asbury Park Member outcrops in Monmouth County
(Fig., 1). It consists of dark brown, often finely laminated,
silty sands and micaceous clays.,

The Alloway Clay outcrops in Cumberland, Gloucester and
Salem Counties (Fig, 1), The clay is light brown in outcrop
and dark brown to gray in the subsurface, The upper beds of
the Alloway Clay near Shiloh, New Jersey are locally called
t+he Shiloh Marl, In the vicinity of Woodstown, New Jersey,
the illite and montmorillonite near the base of the Alloway
Clay have been diagenetically altered to form a "macro=-
kaolinite zone" (Isphording and Lodding 1970 and 1973), This
unit seems to be unique in the geological literature. It had
for many years been mistakenly referred to as "micaceous

tale-like clay™ (Ries and Kummel 1904y,



The Grenloch Sand is the largest of the three members
in areal extent., It outcrops in portions of Monmouth, Ocean,
Burlington, Camden, Gloucester and Salem Counties (Fig, 1).
This member overlies and is interlayered with the Asbury Park
Member to the northeast and the Allowéy Clay Member to the
southwest (Fig, 2). In outcrop the Grenloch Sand Member
consists of fine yellow and orange sands, In the subsurface
the sands are interlayered with silts and clays,

The Asbury Park, Grenloch Sand ané Alloway Clay are
easily recognizable in outcrop, but rapidly lose their
identities downdip and cannot be differentiated lithologi-
cally in deep wells (Isphording and Lodding 1970),.

In the present study subsurface sections of the ¥irkwood
Formation are divided into five biostratigraphic units,

Units I and II are encountered in deep well sections from
Greenwich, Newfield, Milmay and Cape May (Figs, 12-16), Unit
I consists of gray silty clays and varies in thickness from
50 feet at Greenwich to 70 feet at Cape May. Unit II
consists of gray to brown silty clays and varies in thickness
from 25 feet at Greenwich to 60 feet at Cape May, Units III,
IV and V are encountered in sections from Greenwich, Newfield,
Milmay, Atlantic City and Cape May (Figs., 12-16), Unit III
consists of alternating sands and clays and varies in thick-
ness from 45 feet at CGreenwich to 220 feet at Cape May.

Unit IV consists of sands and clays and varies in thickness

from 20 feet at Greenwich to 150 feet at Cape May. Unit V



consists of alternating sands

from 40 feet at Greenwich to- 200 feet at Cape

and silts and varies in t

May,
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RESULTS OF PALYNOLOCGICAL ANALYSES OF THE SURPACE MEMBERS OF

THE KIRKWOOD FORMATION

Palynological assemblages of the Asbury Park Member are
dominated by nonarboreal palynomorphs including those of
Chenopodiaceae, Ericaceae and Gramineae, Spores of lower

vascular plants including Equisetum are abundant in most

samples, Arboreal associates include 2lnus, Betula, Castanea,

Corylus, Cyrilila, Fagus, Juniper, Liguidambar, Picea, Pinus,

Quercus, and Taxodium, Aquatic elements include dinoflagel-
lates, diatoms and silicoflagellates, The diatom, Actino-

ptychus heliopelta Grunow and the dinoflagellate, Deflandrea

are present in samples collected from Farmingdale, Hammonton
and Howell,

| Surface samples of the Grenloch Sand are void of pellen,
spores, silicoflagellates, diatoms, radiolarians, dinoflagel=
late cysts and foraminiferal test linings, Palynological
residues of the Grenloch Sand consist of highly oxidized
fragments of plant tissues,

Palynological assemblages of the Alloway Clav Member

are dominated by arboreal pollen grains, Pinus, Picea,

Quercus, Carya, Juniper, Faqus, Acer and Taxodium are the

dominant forms, Nonarboreal palynomorphs including members
of Chenopodiaceae, Ericaceae and Gramineae are present in the
upper portion of this member, Aquatic elements consisting
primarily of large dinoflagellate cysts, including

Hystrichokolpoma and foraminiferal test linings become less
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abundant in the upper part of the section. Palynological
assemblages of the "macrokaclinite zone" consist almost
exclusively of Pinus grains, Marine, nonarboreal and

arboreal forms including Picea, Quercus, Carya and Tilia are

rare in these assemblages,
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RESULTS OF PALYNCLOGICAL ANALYSES OF THE SUBSURFACE PHASES O

THE KIRKWOOD FORMATION

Subsurface sections of the Kirkwood Formation may be
divided into five biostratigraphic units on the basis of
their palynological assemblages, Units I and II are encount-
ered in deep well sections from Creenwich, Newfield, Milmay
and Cape May (Fig, 1), Units III, IV and V are encountered
in sections from Greenwich, Newfield, Milmay, Atlantic City
and Cape May (Fig, 1).

Palynological assemblages in the lower portion of Unit
I are dominated by large dinoflacellate cysts including those

of Hystrichokolpoma, Pinus, Quercus and Carva are the domi=-

nant arboreal forms throughout these assemblages, Alnus,

Betula, Castanea, Corvlus, Cyrilla, Ilex, Nyssa, Platycarva,

Pterocarya, Salix, Taxodium and Taxus are minor arboreal

constituents, Frequencies of nonarboreal elements including
members of Chenopodiaceae, Ericaceae and Gramineae generally
increase in the upper part of the section,

Palynclogical assemblages of the lower portion of Unit
II are dominated by small spiny dinoflagellate cysts including

forms closely resembling modern species of Micrhystridium,

Arboreal and nonarboreal elements are similar in composition

and distribution to those of Unit I,

in e : el " P P
Pinus, Ouercus, Carya and dinoflagellate cysts dominate

the palynological assemblages of Unit IITI, Freguencies of

dinoflagellate cysts decrease in the upper part of the section
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with small spiny forms beccming relatively nore abundant,
The first major influxes of Picea and Gramineae occur in this

unit, Minor arboreal elements include Alnus, Betula, Castanesa,

Corylus, Cyrilla, Ephedra, Fagus, Ilex, Liguidambar, Magnolia,

Melia, Nyssa, Platanus, Platycarya, Salix, Taxodium, Taxus

and Tilia, Nonarboreal forms including high frequencies of
Gramineae and unidentified spores of lower vascular plants
increase in the upper portion of Unit III, Foraminiferal
test linings, radiolarians, diatoms and silicoflagellates

including Corbisema and Dichtyocha fibula are abundant in the

lower portion of this unit,
Palynclogical assemblages of Unit IV are dominated by

Quercus, Pinus and Carva, Other arboreal forms include Alnus,

Betula, Castanea, Corylus, Cyrilla, Engelhardtia, Facus,

Juglans, Nyssa, Salix, Taxodium, Tilia and Ulmus, Relative

frequencies of Picea decrease in the upper portion of this
unit, Picea completely disappears in the upper portion of
this unit from assemblages taken from Greenwich, Milmay and
Atlantic City. Nonarboreal elements including Chenopodiaceae,
Ericaceae, Gramineae and spores of lower vascular plants are
abundant in the central portion of this unit, Marine forms
consisting primarily of small, spiny dinoflagellate cysts
first decrease and then increase in the upper portion of the
section,

Palynological assemblages of Unit V are dominated by

Pinus, Quercus and Carva, Minor arboreal constituents include

Acer, Rlnus, Betula, Castanea, Corylus, Cyrilla, Fagus,




Pterocarva,

™4 @
S TUNY

i TR H

34
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Juglans, Liguidambar, Macnclia, Nyss

#

Taxodium, Tilia and Ulmus, Picea appears in low frequencies

in lower portions of this unit and increases in the upper
levels, The first appearance of 2bies is noted in this unit
in samples taken from Greenwich, Newfield, Atlantic City and

Cape May. Nonarboreal elements including members of Cheno-

podiaceae; LEricaceae; Cramineae, spores of lower vascular
plants, leaf hairs and Sparangium are abundant in the upper
portion of this unit., The first appearance of Compositae is
noted in assemblages from Creenwich, Milmay, Atlantic City
and Cape May., Marine elements consisting primarily of
dinoflagellate cysts generally decrease with smaller forms
becoming relatively more abundant than larcer forms in the

upper porticn of the unit,

14

Percentage freguency histocrams of the palynological

analyses are presented in Appendix II,



PALECENVIRONMENTAL TUHTERPRETATIONS OF THE SURPACE MEMBERS OF

THE XIRKWOOD FORMATION

Palynological assemblages of the Asbury Park Member
include high frequencies of Chenopodiaceae and Ericaceae,
Mcdern species cf Chenopodiaceae are found in sandy waste
soils, The phreatic waters of these soils are often saline
or biackish (Fernald 1950), Modern species of Ericaceae are
often found in peaty clearings and along the margins of bogs
{Fernald 1950).

The dinoflagellate, Deflandrea, a common form in modern

nearshore brackish water assemblages, is included in several
palynological assemblages of the Asbury Park Member,

The association of members of Chenopodiaceae and
Ericaceae with dinoflagellate cysts indicates a coastal
brackish water environment of deposition similar to that
reported by Martin and Rouse (1966) from the Oligocene
deposits of the Queen Charlotte Islands of British Columbia,

Pinus/Picea ratios ranging from 7/1 to 10/1 and the

presence of Taxodium in palynological assemblages of the
Asbury Park Member indicate that these sediments were

depesited under subtropical climatic conditions, Modern

species of Taxcdium are found in the native floras of the
Gulf Coastal Plain and the southern portion of the Atlantic
Coastal Plain ({(Fairchild and Elsik 1968, Fredrickson 1969,

Stewart 1971 and Tschudy 1973),
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fragments of maceral tissues, The association of these
oxidized macerals along with the relatively coarse texture
of these deposits indicates a high energy, possibly littoral,
environment of deposition for the Grenloch Sand Member,
Palynolocgical assemblages of the Alloway Clay Member
are characterized by decreasing frequencies of large dino=-
flagellate cysts and the presence of nonarboreal forms in the
upper portion of the unit, These assemblages, including high
freguencies of»planktonic foraminiferél test linings in the
lower portion of the unit, indicate a middle neritic environ-
ment of deposition becoming more shallow, pecssibly tc inner
neritic, during the final stages of its deposition (Wall
1965, Groot and éroct 1966 and Davey 1970a),

Decreasing Pinus/Picea ratios from 9/1 to 6/1 and the

presence of modern subtropical forms including Taxodium in

the lower portion of the Alloway Clay indicate that climate
deteriorated during the deposition of this unit, It appears
that the subtropical conditions that prevailed during the
deposition of the lower portion of this member gave way to
temperate conditicns during the deposition of its upper

portion, the Shiloh Marl, Increasing Pinus/Picea ratios

indicate a warming trend during the final stages of the
deposition of the Shiloh Marl, The presence of Taxus,
limited in modern assemblages to the southern portion of

Florida, in the uppermost horizon of the Shilch Marl at

i
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Pitman, New Jersey supports the warming trend interpretation

suggested by the Pinus/Picea ratios,

The apparent lack of arboreal grains other than Pinus

in palynological assemblages of the Macrckaolinite Zone of
the Alloway Clay has been explained by Isphording and Lodding
(1973) to be the result of the diagenesis that produced the
macrokaclinite., They reasoned that the other pollen grains
that were present in the Macrokacolinite Zone were dissolved
during the diagenesis while the hardier Pinus varieties were

unaffected., This seems not to be the case because, although

rare, well preserved grains produced by Carva, Picea, Quercus
and Tilia are present in these assemblages,

It is more probable that the predominance of Pinus is

due to its anemophilous form of dispersal and the relatively
large guantities of pollen that each pine tree produces, In
medern palynoleogical assemblages in the general vicinity of

pine forests, frequencies of Pinus are cver~represented from

their actual numbers by a factor of from 6,6 to 1 to 22.4 to

1 (Davis, Brubaker and Beiswenger 1971).

o)

Palynological assemblages of the Macrokaclinite Zone
are similar in composition to modern assemblages of pine

swamps along the southern New Jersey to Virginia ccasts,
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PALEOENVIPONMENTAL INTERPRETATIONS OF THE SUBSURPACE PHARASES

OF THE KIRKWOOD FORMATION

Palynclogical assemblages of the lower portion of Unit
I are dominated by large dinoflagellate cysts and foramini-
feral test linings, These assemblages indicate a middle
neritic environment of deposition (Wall 1965), Freguencies
of nonarboreal elements generally increase in the upper part
of the section indicating shoaling conditions during the
deposition of the upper horizons {(Davey 1970a),

Pinus/Picea ratios greater than 100/1 and the presence

of platycarya, Pterocarva, Taxodium and Taxus in palynological

assemblages of Unit I indicate deteriorating subtropical
conditions during the deposition of this unit., Modern species

of Platycarva, Pterccarva, Taxodium and Taxus are indigenous

to subtropical and tropical areas of Asia and North America

(Fernald 1950 and Kapp 1969),

Palynclogical assemblages of Unit II are similar in
their overall composition to those of Unit I, Dinoflacgellate
cysts dominate the lower assemblages and then decrease in the
upper assémblages as they do in Unit I; however the cysts of
Unit II are smaller and contain more spines than do the cysts
of Unit I, 2Also the foraminiferal test linings are less
abundant in Unit II than they are in Unit I, These assem=
blages indicate a shoaling inner neritic environment of |

deposition {Wall 1965},
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Pinus/Picea ratios vary from 50/1 to greater than 100/1

in Unit IXI, Relative frequencies of Platycarya, Pterocarva,

Taxodium and Taxus are somewhat lower in Unit II than in Unit
I. Thus the deteriorating climatic conditions during the.
deposition of Unit I appear to have continued throughout the

deposition cf Unit II,

The presence of silicoflagellates, radiclarians, dino-
flagellate cysts and foraminiferal test linings in samples of
Unit III indicates a middle to outer neritic environment of
deposition for these sediments (Cornéli 1969%), Increasing
nonarboreal elements in the upper portion of this unit as
shown by spore/dinoflagellate ratios (Fig, 4) indicate
shoaling conditions during the deposition of the upper
portion of this unit (Dunay 1969),

Pinus/Picea ratios (Fig, 4) indicate that the climatic

deterioration that began during the deposition of Unit I

culminated during the deposition of Unit III, Pinus/Picea

ratios varying from 2/1 to 7/1 and the presence of Gramineae
and Ephedra, whose modern species are present in the south-

western portion of the United States, indicate the presence

of cocl (temperate) dry conditions along the New Jersey

Coastal Plain during the deposition of Unit III,

Palynological assemblages of Unit IV contain few marine
palynomorphs, Those forms that are present are small spiny
dinoflagellates in the uppermost and lowermost horizons,

Spore/dinoflagellate ratios (Fig, 3) are highest in the
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central portion of Unit IV, These assemblages indicate that
the regressive conditions that began in Unit III continued
into Unit IV and culminated during the depositicn of the
central portion of that unit, Assemblages of the upper
portion of Unit IV indicate a return to nearshore conditions.

Increasing Pinus/Picea ratios from 10/1 to greater than

100/1 appear to indicate warming conditions throughout the
deposition of Unit IV (Fig, 4), Picea disappears completely
from some of the assemblages of the uppermost horizons. The
return of Taxus along with lower‘frequencies of Gramineae and
the absence of Ephedra apparently indicates a return to warm
moist climatic conditions along the New Jersey Coastal Plain

during the deposition of Unit IV,

Spore/dinoflagellate ratios (Fig, 3) indicate that the
transgressive conditions that began in Unit IV culminated
during the deposition of Unit V, Small spiny dinoflagellate‘
cysts dominate the assemblages of the central portion of
Unit V indicating nearshore conditions, Increasing spore/
dinoflagellate ratios in the upper horizons indicate a
return to shoaling conditions during the deposition of those
sediments,

Decreasing Pinus/Picea ratios (Fig, 4) from 10/1 to 7/1

and the first appearance of Abies in the uppermost horizons

oo it gueatn s
of Unit V indicate climatic deterioration throughout the
deposition of the unit, Modern species of Abies are generally

restricted to areas north of 45° N, latitude in North America,
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Species of Abies that are present in the Rocky and Appalachian
;Mountains south of 45° N, latitude are restricted to elevations
above 4,000 feet (Collingwood and Brush 1964), Pollen grains
- produced by ééiii in palynological assemblages of Unit V are
most similar, morpholegically, to thosé produced by Abies
balsamea the modern distribution of which is limited to the
native floras of northern New England to the Yukon territory

(Collingwood and Brush 1964 and Kapp 1969).

Paleoclimatic interpretations made in this study on the

basis of Pinus/Picea ratios closely match those made by Norem

(1956) and Dorf (1960, 1964 and 1969) on the basis of paleo-
botanic remains of isolated deposits throughout North America,
Paleobathymetric interpretations made in this study on
the basis of spore/dinoflagellate ratios generally match
those made by Richards and Harbison (1942) and Isphording and
Lodding (1973) on the basis of the molluséan faunas and clay
mineralogy of the surface members of the Kirkwood formation,
. Prior to this study, palecbathymetric interpretations had

not been made on the subsurface samples of the Kirkwood.
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TRANSGRESSIONS AND REGRESSIONS
DURING KIRKWOQOD DEPOSITION
INFERRED FROM SPORES/DINOFLAGELLATES RATIOS™*
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CORRELATION OF THE SUBSURFACE PHASES OF THE KIRKWOCD FORMATION

WITH OTHER FORMATIONS ALONG THE ATLANTIC COASTAL PLAIN

The Miocene sediments of New Jersey were assigned to
the Kirkwood Formation by Knapp (1904), Prior to this, these
sediments were referred to as the Chesapeake Formation
because of the similarity of its molluscan fauna to that of
the Chesapeake Group of Maryland, Delaware and Virginia
(Clark 1893, Whitfield 1894, and Salisbury 1895, 1896 and
1898).,

Richards and Harbison (1942) correlated the Asbury Park
and Alloway Clay Members with the Middle Miocene Calvert
Formation, the basal member of the Chesapeake Group, on the

basis of their molluscan faunas and the diatom, Actinoptychus

heliopelta Grunow, Subsequent correlaticns by Dorsey {1948},

Gardner (1948), Lohman (1948), Johnson and Richards (1952),
Gernant (1970) and Owens and Sohl (1970) égree with those of
Richards and Harbison (1942),

Foraminiferal assemblages of Units I and II of the

present study including Cassigerinella chipolensis, Globi-

gerina bradyi, Globigerina ouachitaensis ciperocensis,

Globigerina prasbuloides, lerovi, Globigerina cf., guingueloba,

' Globigerina venezuelana, Globigerinita dissimilis, Globi-

gerinoides trilcba and unidentified species of Globorotalia

indicate that these units were deposited during the Early

Miocene (Globorotalia kugleri Zone),
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Unit III of the present study can be correlated with
the Calvert Formation on the basis of the silicoflagellates,

Corbisema sp, and Dictvocha fibula, These forms identified

from the 120 foot interval in the Greenwich Well are diag-
nostic forms of the Calvert Formation (Tynan 1957),

Richards (1945) reported the presence of Bulliopsis

integra- {Conrad) and Tevsebra incrnata Whitfield in the 400

to 450 foot interval (Unit V of the present study) of the

Anchor Gas Well in Cape May, Bulliopsis integra (Conrad) and

Terebra inornata Whitfield are diagnostic of the Middle Miocene

St, Marys Formation, the youngest member of the Chesapeake
Group.

Four transgressive sequences are interpreted from
palynological assemblages on the basis of spore/dincflagellate
ratios (Fig, 3) and relative frequency distributions of
continental and marine palynomorphs, The two Lower Miocene
transgressions (Unit I and II) are correlated with the Tampa
and Hawthorn transgressions of South Carolina, Georgia and
Florida, The Middle Miocene transgressions {Units III and V)
are correlated with the Calvert and St, Marys transgressions
of Maryland, Delaware and Virginia, Unit IV is correlated
with the Choptank Formation of Maryland, Delaware and Virginia
on the basis of their stratigraphic positions and palecenviron=-
mental interpretations., Gernant (1970) reported that the
lower portion of the Choptank Formation represents a

continuation of the shoaling that began in the Calvert,



whereas the upper strata were deposited in slightly deeper
water that represented the onset of the St, Marys trans-
gression, The same palecenvironmental interpretations are
reported in this study for the sediments of Unit IV on the
basis of their palynological assemblages,

Correlations of the subsurface phases of the Kirkwood
Formation with other formations along the Atlantic Coastal

Plain are presented in Figure 5,

26
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CORRELATION OF THE SURFACE MEMBERS AND SUBSURFACE PIAZLS CF

THE KIRKWOOD FORMATION

The Asbury Park and Alloway Clay Members are correlated
with Unit III (Figs, 6 and 7) on the basis of their Pinus/

 picea ratios, spore/dinoflagellate ratios, abundances of

Gramineae and lack of Compositae and/or Abies in their

palynological assemblages., The diatom, Actinoptychus

heliopelta Grunow that is diagnostic of the Calvert Formation

in Maryland, Delaware and Virginia is present in assemblages
of Unit III as well as in those of the Asbury Park and
Alloway Clay.

surface samples of the Grenloch Sand Member are void of
palynomorphs due to thelr coarse grain sizes and highly
oxidized state, This member is correlated with Unit IITI of
the Kirkwood Formation in the subsurface because of its
interfingering stratigraphic relationship with the Asbury

Park and Alloway Clay Members (Fig. 2),
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SUMMARY OF THEL SURFPACE MEMBIRS OF THE KIREKWOCGD

MEMBER DESCRIPTION

1} Calvert Egquivalent
Asbury 2) Deteriorating Climate (Subtropical to
Park Temperate)
3) Actinoptvchus heliopelta Grunow Is Present,
4) Coastal Brackisn water Environment of
Deposition

1) Calvert Eguivalent
Grenloch 2) Deteriorating Climate (Subtropical to
Sand Temperate)
3) Void of Palynological Remains
4) High Energy, Possibly Littoral, Environment
of Deposition

1) Calvert Equivalent
2) Deteriorating Climate (Subtropical to
Alloway Temperate)
Clay 3) Actinoptychus heliopelta Grunow Is Present
4) Pine Swamp knvirconment of Deposition,
Deepening tc Middle Neritic and then
Sheoaling, Perhaps to Inner Neritic




SUMMARY OF THE SUBSURFACE PHASES OF THE XIRKWCOD FORMATION

ZONE DESCRIPTION

1) St, Marys Eguivalent

2) Deteriorating Climate (Subtropical to
Temperate)

v 3) First Appearances of Compositae and
- Abies

4) Transgressive Sequence That Began In Zone
IV Continues Intc Zone V Followed By A
Regressive Sequence

1) Choptank Equivalent
2) Pmeliorating Climate (Temperate to
Subtropical) ‘
Iv 3) Picea Becomes Rare In Upper Horizons
4) Regressive Sequence That Began In Zone IIX
Continues Into Zone IV Followed By A
Transgressive Seguence

1) Calvert Equivalent
2) Deteriorating Climate Becoming Slightly
Warmer In The Later Stages (Subtropical

III to Temperate)
3) First Major Influxes Of Picea and
Gramineae

4) Transgressive Sequence Followed By A
Regressive Seguence

1) Hawthorn Eguivalent
2) Deteriorating Climate (Subtropical)
I1 3) Low Freguencies of Picea and Gramineae
4) Transgressive Seguence Followed By A
Regressive Sequence

1) Tampa Eguivalent
2) Deteriorating Climate {(Subtropical)
I 3) Globorotalia kugleri Zone
4) Transcoress.ve seguence Followed By A
Regressive Seguence




1)

2)

3)

4)

5)
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CONCLUSIONS

cubsurface sections of the Kirkwood Formation may be
divided into five biostratigraphic units,

These units are correlated with the Lower Miocene Tampa
and Hawthorn Formations of South Carolina, Georgia and
Florida and the Middle Miocene Calvert, Choptank and St.
Marys Formations of Maryland, Delaware and Virginia,
Spore/dinoflagellate ratios and relative frequencies of
continental and marine palynomorphs indicate transgres-
sive and regressive sequences in the Tampa, Hawthorn,
Calvert and'St. Marys Phases,

pinus/Picea ratios and changes in the regional microfloras

indicate that climatic deterioration from subtropical to
temperate conditions took place during the deposition of
the Tampa, Hawthorn and lower portion of the Calvert Phase
followed by climatic amelioration during the deposition of
the upper part of the Calvert Phase and throughout the
deposition of the Choptank Phase, A second period of
climatic deterioration is indicated during the deposition
of the St, Marys Phase,

The Asbury Park Member is correlative with the subsurface
Calvert Phase, It was deposited in a coastal brackish
water environment of deposition under subtropical to

temperate climatic conditions,
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6) The Grenloch Sand Member is correlative with the sub-
surface Calvert Phase, It was deposited in a high energy,
possibly littoral, environment of deposition under sub-
tropical to temperate climatic conditions,

7) The Alloway Clay Member is correlative with the subsurface
Calvert Phase, It was deposited in a low energy nearshore
environment of deposition under subtropical to temperate

climatic conditions,
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GEOLOGIC AGE AND CHESAPEAKE GROUP

EQUIVALENTS OF THE KIRKWOOD FORMATION,
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facies of the Kirkwood Formation
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Figure 10:
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Farmingdale Sample
1 1/4 miles north of Farmingdale, about 200 yards
east of the railroad tracks, at an elevation of
approximately 15 feet above sea level
(Unit III)
Black Clay

Chenopods, Equisetum, Ericaceae, Osmunda, and
. '114W - ; M ftesnen e Y
Polypodium deminate assemblages

Hammonton Sample

south side of Hammonton Road, about 2 miles east
of Route 9, at an elevation of approximately 25
feet above sea level

(Unit III)

Light Gray Sands and Clays-=-Low Freguencies of
Palynomorphs
Light Gray Clay=--Low Freguencies of Palynomorphs

Dark Black Silty Clay-=-Nonarboreal elements
dominate assemblages

Light Gray Clay--Low Frequencies of Palynomorphs

Light Gray Clay--Low Freguencies of Palynomorphs

Howell Sample

landfill site, about 3 miles east of Route 9 and
1 mile north of the Ocean County Line, at an
elevation of approximately 40 feet above sea level

(Unit III)
Red Sands with small Gray Clay Inclusions=-=-Low

Frequencies of Palynomorphs and
Actinoptychus heliopelta

Surface Samples of the Asbury Park Member
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Woods town Sample

(Unit III)

Brown to Gray Silty Clay--Decreasing Frequencies
of Dinoflagellate Cysts and Foraminiferal
Test Linings-in the Upper Portion of the
Section, Actinoptychus helionelta is
present in these assemblages,

"Macrokaolinite ane"-—Very High Frequencies of
Pinus, Few Dinoflagellates

oo 0® ,°, %Y Glauconitic Sands (Eocene)

Pitman Sample

(Unit III)

Brown tc Gray Silty Clay=--High Freqguencies of
Dinoflagellate Cysts and Foraminiferal
Test Linings

Samples Not Available

Brown to Gray Silty Clay-=-Hiogh Freguencies of
Dinoflagellate Cysts and Foraminiferal
Test Linings

Figure 1l: Subsurface Samples of the Alloway Clay Member



Cohansey Formation (Miocene)

(Unit V)

Compositae and Abies, Major Influx of
Dinoflagellate Tysts

(Unit 1IV)

{Unit III)

&

Gramineae are apundant,

{(Unit II)

Cysts

(Unit TI)

Cysts and Foraminiferal Test Linings

Figure 1lZ:

Shark River Formation (Eocene)

Glauconitic Sands--Dinoflagellate Cysts Are
Abundant

o
e

s

Ssubsurface Secticn of the Kirkwood Formatio
From Greenwich, New Jersey

Brown to Gray Silty Clay=-~First Appearances of

Gray Silty Clays--Nonarboreal Forms Are Common

Gray Silty Clay=-=-Major Influx of Dinoflagellat

Gray Silty Clay=-=Major Influx of Dinoflagellate

47

Yellow to Orange, Coarse to Medium Sand--Barren

Gray Silty Clay--Major Influx of Dinoflagellate
Cysts and Foraminiferal Test Lininags, Corbisersa

s AU ——

and Dictyocha fibula are present, Picea and

e

f
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140

200

Figure 13:

Cohansey Formation (Miocene) and Quaternary
Deposits

Yellow, Orance and Brown Sands and Gravels--
Void of Palynological Remains

(Unit V) ‘
Brown Sands and Clays--First Appearance of
Abies
(Unit IV)
Gray Silty Clay==-Spores are abundant
(Unit III)
Gray Silty Clay=-~-First Major Influxes of
Picea and Gramineae

(Unit II)
Compact, Gray Silty Clay--Major Influx of
Dinoflagellate Cysts and Foraminiferal
Test Linings, Globorotalia kugleri Zone

(Unit I)
Compact, Gray Silty Clay--Major Influx of
Dinoflagellate Cysts and Foraminifers

Shark River Formation

Glauconitic Sands~=Few Dinoflagellate Cysts

Subsurface Section of the Kirkweod Formation

from Newfield, New Jersey
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(Unit V)

200 ‘M& Brown to Gray Sands and Silts--First Appearance
of Coémpositae
300' A
(Unit IV):
Brown to Gray Sands and Silts--Spores are
abundant
450'
(Unit III)
Brown to Gray Fine Sands=-=-Major Influx of
Dinoflagellate Cysts and Foraminiferal
Test Linings
650’ ,
(Unit II)
Yellow to Brown Sands=~Major Influx of
Dinoflagellate Cysts
740'
: (Unit I)
Yellow to Brown Sands=-Major Influx of
Dinoflagellate Cysts and Foraminiferal Test
810’ Linings
Pep o el Shark River Formation

LAAa

Glauconitic Sands=-=Dinoflagellates are common

Subsurface Section of the Kirkwood Formation
from Milmay, New Jersey
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400 .ty
(Unit V)

Gray Silty Clays=--First Appearances of Abies
and Comrpositae, Major Influx of
Dinoflagellate Cysts

600
(Unit IV)

690

(Unit III)

Brown to Brownish Gray Sands~-Major Influx of
Dinoflagellate Cysts and Foraminiferal
Test Linings

780

Figure 15: Subsurface Section of the Kirkwood Formation
from Atlantic City, New Jersey
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Cohansey Formation (Miocene)
Gray Sands and Gravels=--Few Palynomorphs
are present

(Unit V)
Sands and CGravels-~First Pppearances of
Abies and Compositae, Major Influx of
Dinocrlagellate Cysts

(Unit IV)
Sands and Gravels--Spores are abundant,

(Unit III)
Sands=-=First Major Influxes of Picea and
Gramineae, Major Influx of Dinoflacellate
Cysts and Foraminiferal Test Linings

(Unit II)

Sands=-Major Influx of Dinoflagellate Cysts

(Unit I)
Sanés--Major Influx of
and Foraminiferal Test

Dinoflagellate Cysts
Linings

Shark River Formation {(Eoccene)

Clauconitic Sands=-=Dinoflacellates are abundant

subsurface Section of the Kirkweod Formation
from Cape May, New Jersey
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APPENDIX III
Absolute Frequency Counts of Palynomorphs and other Microfossil

Groups of the Kirkwood Formation
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Figure 27: Absolute Frequency Count of Palynomrphs of the Alloway Clay Member from Pitman, N. J.
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